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Abstract 

The main goal of this thesis was to prove the feasibility of basing electron depth 

dose calculations in a phantom on first-principles single scatter physics, in an 

amount of time that is equal to or better than current electron Monte Carlo mcth- 

ods. 

The Macro Response Monte Carlo (MRMC) method achieves run times that are 

on the order of conventional electron transport methods such as condensed history, 

with the potential to be much fa,ster. This is possible because MRMC is a Local-to- 

Global method, meaning the problem is broken down into two separate transport 

calculations. The first stage is a local, in this case, single scatter calculation, 

which generates probability distribution functions (PDFs) to describe the electron’s 

energy, position and trajectory after leaving the local geometry, a small sphere or 

“kugel” 

A number of local kugel calculations were run for calcium and carbon, creating 

a library of kugel data sets over a range of incident energies (0.25 MeV - 8 MeV) 

and sizes (0.025 cm to 0.1 cm in radius). 

The second transport stage is a global calculation, where steps that conform 

to the size of the kugels in the library are taken through the global geometry. For 

each step, the appropriate PDFs from the MRMC library are sampled to determine 

the electron’s new energy, position and trajectory. The electron is immediately 

advanced to the end of the step and then chooses another kugel to sample, which 

continues until transport is completed. 

The MRMC global stepping code was benchmarked as a series of subroutines 

inside of the Peregrine Monte Carlo code. It was compared to Peregrine’s class II 

condensed history electron transport package, EGS4, and MCNP for depth dose in 
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simple phantoms having density inhomogeneities. Since the kugels completed in 

the library were of relatively small size, the zoning of the phantoms was scaled down 

from a clinical size, so that the energy deposition algorithms for spreading dose 

across 5-10 zones per kugel could be tested. Most resulting depth dose calculations 

were within 2-3s of well-benchmarked codes, with one excursion to 4%. 

This thesis shows that the concept of using single scatter-based physics in 

clinical calculations would not only be possible, but would likely be more efficient 

than current methods, provided large kugels were generated. 

This work was performed under the auspices of the U.S. Department of Energy 

by the Lawrence Livermore National Laboratory under contract no. W-7405.ENG- 

48. 
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Chapter 1 

Electron Dose Calculation 

Methods 

1.1 Introduction 

1.1.1 The Role of Electrons and their Simulation in Radio- 

therapy 

For all its relative success as a cancer treatment modality, radiotherapy still suffers 

from the fundamental need for more detailed knowledge about where the energy 

is being deposited in the patient. Traditionally absorbed dose computation has 

been based on correcting dose distributions that have been measured in a water 

phantom, as will be discussed below. It would be much more desirable to calculate 

the dose distribution from first principles. Although we presently have no means 

to calculate the exact dose distribution delivered in a particular patient, we are 

able to simulate the physics of a treatment in a patient’s own anatomy, provided 

CT data are available for that patient. There are many methods of simulation, 

several of which will be discussed in this chapter. 

Ultimately it is hoped that accurate simulation will lead to more conformal 

dose distributions, confidence in dosimetry, and optimization of treatment plans. 

The better the dose is conformed to the tumor, the higher the dose levels can 
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2 CHAPTER 1. ELECTRON DOSE CALCULATION METHODS 

be tolerated for the same complication rate; or conversely, the lower the compli- 

cation rate can be for the same absorbed dose. Together these factors will bring 

about higher cure rates for tumors, and/or lower complication rates, allowing more 

patients to live comfortable lives. 

Electrons play an important role in radiotherapy. Not only are they used a,s a 

primary beam in all or part of approximately 5.10% of all radiotherapy treatments, 

they also arise as secondary particles in all other treatments -most notably in those 

using photon beams, which account for the vast majority of all treatments. 

The main reason primary electrons are used to treat certain tumors is that 

almost all of their energy is deposited up to a predictable depth in the medium, 

which mczms normal tissue downstream of the incident beam is spared. This can be 

seen in the t,ypical electron depth-dose curve shown in Figure 1. The electrons will 

cause deposition of a very small amount of energy beyond their practical range in a 

medium, due to bremsstrahlung photons which they create as they (de)accelerate 

in the medium. These photons have a much lower probability of interaction than 

the electrons, and travel deeper as they exponentially attenuate. Electrons are 

often the modality of choice for tumors residing a few centimeters below the skin, 

especially when other critical organs are located beyond the tumor, such as in the 

head and neck region. 

Electrons also have the advanta,ge of being inexpensive to generate. In addition, 

they have been widely used for over thirty years, which has allowed much physician 

experience to be accumulated. 

1.1.2 Simulating the Transport of Electrons in Media 

Simulating electron interactions in media involves unique challenges relative to 

other types of particle transport for several reasons. First, the cross sections for 

electrons tend to be five or six orders of magnitude higher than those for neutrons 
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Depth Dose for 10 MeV e- in Water 

0.0020 r----y- 

o,oooo I 0.0 2.0 4.0 
Depth (cm) 

6.0 8.0 

Figure 1: Example of a typical depth-dose curve for a electron beam. This is a 10 

MeV electron beam norma,lly incident on a water pha,ntom. 



4 CIfAPTER 1. ELECTRON DOSE CALCULATION A!!ETHODS 

or photons of the same energy, so simulation of each collision has hist,orically been 

too time-consuming to be done routinely. For instance, the mean free path of a 1 

MeV electron in water is approximately 10m4 cm, which is quite small in relation 

to the volumes of interest for most transport problems. 

Secondly, the fractional energy loss per collision is frequently five orders of 

magnitude smaller for electrons than it is for photons. This indicates that the 

number of interactions required for an electron to give up all of its energy is very 

large. With a few rare but important exceptions, single interactions do not change 

the electron’s energy or direction by a large amount. It is rather the cumulative 

effect of many small changes that result in the characteristics of the electron track. 

Thus it is important to have accurate physics for each event, since errors will easily 

compound as the electron slows down. 

Finally, even though most of the changes in energy and angle are small, they 

are not insignificant. For heavier charged particles, one can usually make a simple 

(Gaussian-like) approximation for the lateral distribution; for electrons, these ap- 

proximations do not hold as well because they tend to underestimate the degree 

of lateral transport. 

The key to getting electron absorbed dose distributions correct in an inhomoge- 

neous phantom or patient is to simulate the lateral transport correctly. To achieve 

this, it is crucial that the scatter angles are modeled accurately. In particular, the 

low-probability large-a,ngle scatters and backscatters cannot be underestimated, for 

it is these events that lead to the complicated structure in the dose distributions, 

especially near media interfaces. 
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1.1.3 Approaches to Clinical Electron Dose Calculation 

Traditionally, electron dose distributions were approximated without doing any 

explicit electron transport at all, but rather by extrapolating from measured re- 

sults taken for a pa,rticular energy, field size and source-to-surface distance (SSD) 

on a given accelerator. The extrapolation was done by modifying the absorbed 

dose that was experimentally determined under the reference parameters by ratios 

representing the change between those parameters a,nd the parameters of interest. 

For example, if dose values were measured in water, a table of the percentage of 

the maximum dose as a function of depth (on-axis) in the water could be deduced. 

A similar table could be generated for off-axis ratios (OARS) by measuring lateral 

profiles at a variety of depthsThe dose at a given point P in the patient. could 

then be estimated by knowing the maximum dose for the treatment and applying 

the percent depth dose (PDD) correction for the depth of P in the patient, and an 

off-axis correction for the distance to P from the axis at that depth. 

Tables of PDDs were available for various sources (incident energies), field sizes, 

depths in phantom, and SSDs. To modify the dose for an SSD that was different 

from the reference SSD, the ratio of inverse distances squared would be applied. For 

a change in field size, tables of field-size-factors would be applied. To compensate 

for the curved surface of a patient, as opposed to the flat surface of the phantom, 

the isodose lines could be shifted along rays projecting from the source. 

It is important to point out that these techniques are often quite successful 

for predicting dose in a homogeneous volume. In fact, in some cases they may be 

superior to some more advanced methods (for homogeneous volumes) because they 

are based on measurements from a particular machine; thus they circumvent the 

problem of how to model the electron distributions emerging from the source and 

incident on the patient/phantom, which can be a significant obstacle to transport- 

based methods. 

r 



6 CHAPTER 1. ELECTRON DOSE CALCULATION METHODS 

The real challenge for these empirical-based methods, then, lies in correcting 

the homogeneous water dose distribution to account for the many inhomogeneities 

present in the human body, such as air cavities, bone, dense muscle ma,ss and 

sparse lung tissue. 

One way of addressing this problem was to apply “equivalent-thickness correc- 

tions” to the water measurements. These corrections were based on compressing or 

stretching the isodose lines by factors that were derived from the relative electron 

density in the path through tissue as compared to that in water [3G, 11. These 

methods, at their best, were useful for obtaining depth dose information in the 

center of a broad beam, for a medium consisting of homogeneous layers. Even 

then, they do not account for the fact that electrons interact not only with other 

electrons, but also with the nucleus. For example, the elzrstic scattering cross sec- 

tion, introduced in Chapter 2, depends on the atomic number of the materia,l. 

The clinical implication of this is that not all materials behave like scaled-density 

water; real bone, for example, scatters much more than water of bone density. 

1.2 The “Right” Way: The Boltzmann Equation 

At the most fundamental level, radiation transport is an attempt to derive a dis- 

tribution of the particles (in space, direction, time and energy) after they have 

traversed some distance into a medium. Formally, the way to begin this endeavor 

is by writing the general equation for transport from kinetic theory. Kinetic theory 

does not treat individual particles, but rather describes the aggregate behavior of 

continuous field of particles in a statistical manner [39]. 

Let ?z be the number of particles that is expected within a differential volume 

element, d3r, with a velocity (which is directly related to its kinetic energy) that is 

within a differential velocity group, d3v, at time t. The function n(r, v, t), called 

the “phase space density function”, thus contains all of the information required 
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for the description of standard transport processes; if a general solution is found 

for n, then the transport problem is solved. 

Imagine that it is desired to transport the radiation through an arbitrary vol- 

ume V, with a surface area S. The only mechanisms that can alter the number 

of particles in V are flow through the surfa,ce of V, collision events within V, or 

sources of new particles located inside of V: 

For the ca,se of electron transport through tissue, the equation can bc simplified 

due to a few basic facts about the nature of the problem. First, since we are not 

interested in information a,s a function of time (we only care about the total distri- 

bution after a treatment), we may consider a time-independent form of the above 

equation. Secondly, we can assume that the medium is in thermal equilibrium. 

This allows us to use the well-known Maxwell-Boltzmann equation to approximate 

equation 1.1. Thirdly, since the incident particles themselves do not interact with 

each other until fluences much higher than those used for radiotherapy are reached, 

terms higher than linear in the Boltzmann equation may be neglected. Thus the 

appropriate equation in differential form is 

v-gn+vC,n= .I’ v’C,(v’ + v) n(r,v’) dv’ + .s , (1.2) 

where the first term reflects flow in and out of the volume; the second term accounts 

for the loss of the particles by the medium, where the third term represents the 

gain of particles from collisions, and where s represents sources from other non- 

transport processes. In this equation Ct is the total interaction cross section which 
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removes particles from the distribution and C, is the scatter cross section which 

results in a gain of particles to the distribution from collision events. 

If a solution to the Boltzmann equation can be found, the problem of deter- 

mining the dose distribution for that case is finished. All the methods below are 

different approaches to solving this equation. 

1.3 Deterministic Methods 

The Boltzmann equation (equation 1.2) can be made tenable computationally by 

using the technique of “differencing” [14]. This involves replacing the continuous 

operations with their corresponding discrete operations, such that the differentials 

become n’s and the integrals become summations. This idea could, in princi- 

ple, be utilized in radiotherapy applications by writing (and diffcrencing) a Boltz- 

mann equation with appropriate three-dimensional boundary conditions for each 

CT voxel. However, a single CT scan will have on the order of 100,000 voxels in 

the dose grid. This vastly escalates the computational intensity. 

There is a further problem with using this type of approach for electron trans- 

port in any setting. Numerical solutions for transport problems are best suited 

for smoothly varying functions in space and direction. However, charged parti- 

cle transport problems, particularly those involving electrons, often require very 

anisotropic functions to describe their angular and spatial distributions. This 

means that a solution to equation 1.2 will require many high-order terms to have 

a satisfactory degree of accuracyr. This also causes a problem in computational 

intensity. 

Nevertheless, numerical transport methods do have at least one potential ad- 

vantage over other methods; namely, they can account for perturbations. If it 

‘It has been estimated by Cullen that a,s many as 800 Gauss-Legendre moments would be 
necessary to model the anisotropy for individual interactions [3] 
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is not an absolute (accurate) a,nswer that is desired, but rather knowledge about 

a trend in the output variable after a minor change in the input conditions, nu- 

merical methods can propagate the perturbation quickly. With the Monte Carlo 

method, in contrast, the entire simulation would have to be run again with the 

new input specifications, and would be subject to statistica, noise which may hide 

the perturbation 

1.4 Pencil Beam Transport: Fermi-Egyes The- 

ory 

The Pencil Beam method sums t~he dose distribution from individual small dia,m- 

eter rays called pencil beams. A pencil beam is made up of particles which pass 

through a differential cross sectional a,rea, 6x6~. The off-axis dependence of the 

dose distribution for each pencil beam is described by the Fermi-Eyges theory of 

thick-target multiple Coulomb scattering [23]. The on-a,xis dose information is 

obtained from measured depth-dose data. 

The calculation assumes that the patient or pha,ntom can be represented by a 

stack of slabs of different material types. Each individua,l slab is homogeneous and 

infinite in lateral extent. Assuming a single pencil beam has normal incidence on 

such geometry, the dose at a position (x,y,z) can be expressed as 

where the first factor is the off-axis term and the latter factor is the central-axis 

term. According to Fermi-Eyges theory, the off-axis term may be represented by 

a Gaussian of the form 
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where o is the angulx spread about the axis including the penumbra. The on-axis 

term may be expressed in terms of its relationship to the depth dose in mater, go 

where SSD is the source-to-surface distance, and zeff is the effective depth in 

water, a,ssuming the linear stopping power of the material at depth t is relatively 

independent of electron energy for normal body tissue. 

The quantity go can be related directly to a depth dose curve measured in a 

water phantom, assuming a uniform incident beam, by the equation 

Do(GY,z) = 3 ~~c~p(-(~ - x’)z;y - “)*)q dx’ dy’ , (1.6) 

where the limits of the integral depend on the extent of the held at depth z. 

One of the most widely used simulation methods in clinical electron radiother- 

apy is an application of Fermi-Eyges theory in the so-called Hogstrom method 1321. 

The strength of the Hogstrom method of simulation is that it is fast enough for 

clinical use, on the order of minutes. It also uses measured data for input that may 

be specific to the treatment unit. It models penumbra in homogeneous situations 

(e.g., water phantoms) reasonably well, generally within approximately 10%. It 

also models the dose distribution downstream from inhomogeneities that can be 

considered “infmite slabs” in the lateral plane with the same success. 

Aside from the geometrical assumptions of infinite homogeneous slabs, the pri- 

mary weakness of this method is that it ignores the production of secondaries, and 
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the energy loss that occurs from them. In reality, the Moller (electron-electron) 

scattering changes the shape of the scatter distribution. The other major short- 

coming of the Hogstrom method, and Fermi-Eyges theory in general, is t,hat it does 

not model single large angle scattering events, including backscattcr. Neglecting 

backscatter results in an underestimation of dose near bone or other high atomic 

number interfaces. 

The Hogstrom method has been found to under-represent hot and cold extremes 

in energy deposition by approximately 10% 1321. Although the ability to run 

simulations quickly allows clinicians to try several different treatment plans, errors 

of this magnitude are bound to have clinical significance in some cases. 

1.5 The Monte Carlo Method 

Monte Carlo is a general problem solving tool which has seen applications in 

many diverse fields including mathematics, economics, traffic control, and radi- 

ation transport. The concept can be summarized by imagining the Monte Carlo 

code as a black box. In each case, there are four required inputs to the box; namely, 

a random number generator, the source characteristics, simulation geometry, and 

a probability distribution governing the possible outputs. 

The output of the box uses the random number to index the probability dis- 

tribution in some way, and a corresponding physical or mathematical result in 

generated. Usually this process is repeated many times, such that the result from 

each iteration is combined with all previous results until the desired statistical 

accuracy for the solution is achieved. 

In electron transport problems, the Monte Carlo method is an indirect nu- 

merical solution to the Boltzmann equation, based on statistical samples. The 

technique consists of sampling the probability distributions (which contain the 

r 
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aggregate behavior of the Boltzmann equation) to govern the individual interac- 

tions of electrons in a given material. Simulated transport proceeds by moving 

sequentially from one physically valid set of electron variables (energy, location, 

and direction) to the next. The code keeps track of, the physical quantities of 

interest (i.e., energy deposited) for a large number of histories to provide the re- 

quired information about average quantities at the end of t,he simulation. The 

higher the number of histories, the smaller the sampling error, and the closer the 

approximation is to a continuous, Boltzmann solution. 

Monte Carlo methods simulate electron transport by attempting to model the 

effect of the physical interactions taking place. They are capable of accurately 

modeling the dose response in a variety of difficult geometries, including anthropo- 

morphic phantoms [18, 551. There are several categories of Monte Carlo algorithms 

commonly used for electron transport, which will be introduced in this section. 

The main limitation of the Monte Carlo method applied to radiotherapy is the 

run time required to obtain reasonable statistical accuracy in the dose. Typically, 

running times for good statistics on a commonly available workstation would be 

measured in hours or tens of hours*, whereas a desirable time frame for a clinical 

code would be approximately ten minutes or less. However, this limitation will 

perhaps be overcome with the advent of a Monte Carlo code written especially for 

tracking photons and electrons through a regular Cxtesian CT scan, as will be 

introduced in Section 1.8.2. 

There are three main ways Monte Carlo can be sped up to approach the desired 

time window [39]. First, better computer hardware can (and will) be built, which 

should allow traditional electron transport codes (for example, condensed history 

codes, which will be introduced in Section 1.5.1.) to be fast enough for clinical 

use in three to eight years3. Secondly, a variety of statistical shortcuts such as 

“The times are quite dependent on the complexity of the geometry and the size of the field. 
3extrapolatirrg from developments over the past ten or so years 
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variance reduction, roulette, range reduction, and correlated sampling have been 

employed with some success [ll]. These methods combined can reduce computing 

time significantly, although the exact amount is highly problem-dependent [12]. 

The main drawback to these techniques is that they must be applied with great 

caution to avoid biasing the physics in ways that change the answer significantly 

in regions of interest. 

Finally, Monte Carlo can be sped up by the development of new and faster 

algorithms. For example, one success in this area is the Macro Monte Carlo (MMC) 

code, introduced in Section 1.6.1, which is able to simulate electron transport 

through a CT-volume in 200 seconds4 

It is in this category that this research attempts to make a contribution with 

the Macro Response Monte Carlo code. 

1.5.1 A Monte Carlo Method for Charged Particles: Con- 

densed History 

In the previous section it was found that analog techniques for charged particle 

transport suffer from computational difficulties due to the large number of collisions 

that must be modeled. Condensed history is a technique which circumvents this 

problem by combining many collisions into a single “step” or “jump” through the 

medium. Rather than attempting to model all interactions, condensed history 

approximates the aggregate effect of multiple collisions after a given step size. The 

resulting distributions are somewhat more isotropic and much easier to model. 

In order to simulate the phase space of an electron after it has had many 

collisions, distributions which approximate their net effect on energy and angle are 

made. These distributions are sampled at the end of each step. The step size may 

4The problem was a monoenerg-etic, parallel 10 MeV, 5 cm x 5 cm electron beam on a head 
pha,ntom, with a resolution of 0.25 cm x 0.25 cm x 1 cm. A million incident electron histories 
were calculated on a 200 MHz Pentium Pro ruming Linux 1.2.13. 

r 
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be thought of in terms of the physical distance traveled or the energy difference 

between consecutive steps as the electron slows down. It must be emphasized that 

a condensed history step is not a physical rea,lity for either the incident particle or 

the medium; it is simply a convenient (but artifactual) discretization that is used 

to periodically update the state of the particle. 

There are several categories of approximations about the particle’s interactions 

that are made in order for this technique to work. It will be seen that these 

approximations, which are discussed below, become less accurate when the energy 

region of interest is of the same order of magnitude as the atomic energy states; 

i.e., in situations such as low kinetic incident energy (below 100 keV), and high 

atomic number materials. Since condensed history algorithms are designed to run 

efhciently, it is desirable that they have as few steps as possible, because the run 

time for the code will be proportional to the number of steps. They also rely 

on multi-scatter distributions (discussed below) which require a large number of 

individual interactions occurring within each step to be valid. However, other 

assumptions, such as the assumption that the energy can be deposited along a 

straight line representing the path, become worse as the step size increases [9]. 

1.5.2 Two Flavors of Condensed History: Class I and Class 

II 

Condensed History code algorithms were first divided into two categories, broadly 

known as Class I and Class II, by Berger [5]. This convention has been adopted 

and discussed by many authors since then. 

In Class I condensed history algorithms no individual interactions a,re modeled, 

and all energy loss is assumed to be some constant amount per unit distance. 

The Class I schemes group all interactions together in each step and summarize 

the total effect at the end of the step by random sampling. The step sizes are 
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predetermined, being either constant or logarithmically spaced. They use multi- 

scattering distributions exclusively. 

Cla,ss II schemes, on the other hand, use restricted multi-scattering distribu- 

tions for the majority of the events, but model certain “catastrophic” events indi- 

vidually, such a,s bremsstrahlung and ionizations giving rise to secondary electrons 

(“knock-on9 or “delta-rays”) having a,n energy greater than some predetermined 

cutoff value, 7’~. A “catastrophic” mean free path is determined (A,,,) from the 

sum of the cross-sections of the events which are considered catastrophic. The step 

length is given by 

s = -A,,, ln(1 - <) = -A,,, In(<) (1.7) 

where < is a uniformly distributed random number on the interval (0,l). Non- 

catastrophic events are a,ssumed to occur continuously throughout the pathlength, 

causing a uniform mean energy loss per unit distance given by the restricted stop- 

ping power for the medium. 

Each scheme has advantages. Class II algorithms model the initial state of 

bremsstrahlung photons and knock-on electrons explicitly, which is a closer ap- 

proximation of the true physical process. It is also the first step towards allowing 

their histories to be explicitly and independently followed. This allows their an- 

gular deviations to be more accurate and the correlation between energy loss and 

angular deflection is always conserved [2]. Cla,ss II algorithms are dependent on the 

threshold energy for knock-on electrons, Tn. The Class I algorithms are inherently 

free of this dependency, but they are not able to model large-energy-loss events as 

accurately since they don’t account for knock-on electrons and photons carrying 

energy away from the primary track. 
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1.5.3 General Condensed History Assumptions 

1. Straight-Line Approximation 

In condensed history codes, the average distance traveled is ca,lculated from 

the CSDA (Continuously Slowing Down Approximation) range. The electron 

path over that distance is assumed to be a straight line segment, whereas 

in reality, the electron is being deflected slightly after each interaction. The 

larger the step size, the worse this approximation becomes. The approxima- 

tion is also worse in high atomic number (Z) materials since the electrons 

scatter at larger angles per collision than for low Z materials. 

2. Multiple-Scatter Probability Distributions 

As mentioned previously, condensed history algorithms must a,ssumc a dis- 

tribution of possible scatter angles at the end of each step. Probability dis- 

tributions representing the spread of net angular deflections after a step are 

typically based on theories by either Moliere [8] or Goudsmit and Saunderson 

[24, 251. 

l Moliere Model for Multiscatter 

The Moliere approximation is valid for electrons that have undergone 

many small deflections (> 20 scatters). The derivation relies on the use 

of the small angle approximation, sin8 E 8, which limits the validity 

of the theory to multiple scattering angles, 0, which are less than ap- 

proximately 20 degrees. More details of the Moliere distribution can be 

found in Appendix Section A.l. 

l Goudsmit-Saunderson Model for Multiscatter 

The Goudsmit-Saunderson scattering theory is more robust than that of 

Moliere. It does not rely on a small angle approximation, and it doesn’t 
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explicitly require a large number of individual scattering events. Multi- 

angle scatter distributions are constructed simply by estimating the 

average scattering angle for each collision and the number of collisions 

that have occurred in a step [25]. 

Although the Goudsmit-Saunderson model does not explicitly require a 

fixed number of scatter events per step in order to be valid, it does have 

some computational limits. As can be seen in Appendix Section A.2 

the distribution takes the form of a Legendre series. As the pathlength 

becomes shorter (which makes the straight-line approximation better), 

higher orders are required in the Legendre series to make the expression 

accurate, especially at large angles. Berger and Wang [7] report as many 

as 999 terms may be required if the step size is reduced to 20 mean free 

paths in carbon and gold. 

l Comparison of the Two Multi-Scatter Models 

Both the multi-scatter distributions perform equally well for small scat- 

t,ering angles at relatively high energies and low atomic number ma- 

terials, which probably constitute the majority of cases in mdiother- 

apy. Beyond those conditions, Moliere distribution and the Goudsmit- 

Sanderson distributions each have their respective niches [7]. The Moliere 

distribution has the advantage that is relatively quick and easy to code 

(and sample) because it is a universal function of a scaled variable. This 

is makes it very convenient for finding the multi-scatter angle given a 

randomly selected pathlength. The disadvantages of using a Moliere 

distribution at low energies stem from t~he small angle approximation 

(which limit its use to deflections less tha,n about 20 degrees) and the 

competing need for many scatter events in each step.5 At high energies, 

5Bielajew [9] has found a way to cwercmne this limitation, see Section 1.5.6 

r 
, 
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problems may arise because the Moliere theory does not take quantum 

spin and relativistic effects into account. 

The Goudsmit-Saunderson distribution, on the other hand, is more gen- 

eral and robust. It is applicable for much smaller pathlengths than 

Moliere and it is valid for any scattering angle. It can be used with any 

elastic-scattering cross section calculated with any potential, including 

those with spin and relativistic effects accounted for. It is not difficult. to 

correctly differentiate between the scattering of electrons and positrons. 

The real problem with the Goudsmit-Saunderson distribution is its com- 

plexity, which results in tedious coding and slow execution. This can 

be somewhat ameliorated by storing prc-calculated distributions for a 

chosen set of pathlengths, and sampling them at run time, but the code 

then relics on non-random pathlengths. 

3. Uniform Energy Loss Across a Step (dE/dx) 

Since condensed history methods do not consider the amount of energy lost 

to the medium for each individual interaction, they must have an alternative 

method of distributing the energy loss. As mentioned in section 1.5.2, Class 

I transport assigns an amount of energy loss directly proportional to the 

length of the (straight) path the particle took during the step. The amount 

is simply the average amount an electron of a particular energy gives up to 

the medium, which is varied slightly. Class II transport does the same for 

non-catastrophic energy losses. 

The stopping power (or dE/dx) is the average amount of energy lost to 

the medium per unit distance. Most of this energy lost to the medium is 

transferred via ionization and excitation of atomic electrons. The extent of 

this energy loss, in MeVcms/g for an electron can be calculated by Bethe’s 

expression [8] modified by Rorlich and Carlson: 
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where r is the kinetic energy of the electron in m0c2 units; fi is the ratio v/c; 

NA is Avagadro’s number, 6.022 x 10z3 per mol; I is the mean ionization 

potential in MeV; and b is the density effect correction factor. Note this 

equation shows the stopping power is dependent upon the medium through 

three parameters: Z/A, I, and 6. If a stopping power is used for energy loss, 

some compensation for the uniformity of the energy loss is required, as mill 

he discussed in the next section. 

Equa,tion 1.8 has been previously calcuhrted for a wide variety of mzrteri- 

als and energies; a,nd the resulting tables of stopping powers are available 

from agencies such as the International Commission on Radiation Units and 

iMeasurements (ICRU) [47]. 

The Need for Energy Straggling Across a Step 

Suppose a charged particle of energy Tn is incident on a layer of material. 

When it reaches the other side of this layer, the particle will have an energy Ti 

which is less than its initial energy. Now suppose a series of identical particles 

are allowed to traverse this layer of material. The energy of the particles on 

the other side will not be constant, but rather will follow a distribution of 

energies with considerable fluctuation. This is known as energy “straggling”. 

An expression for the energy loss distribution was derived by La,ndau [35]. 

He expressed the probability of an energy loss between n and a + dn as 
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where s is the pathlength and q5~(X) 1s a universal function of a scaled energy 

loss parameter A, which is available in tabular form. The relation between 

the scaled variable and the actual energy loss is given by 

(1.10) 

where 

The mean energy loss of the Landau distribution is the stopping power for 

a particular material and energy. The stopping power method of handling 

energy loss across a step is a mean energy loss per unit distance; the “true” 

energy loss that would have occurred over such a step for a given electron 

is some variation about the mean value. Because the Landau distribution 

may be a relatively expensive method of treating energy loss, the effect is 

often approximated by using a stopping power spread out by a Gaussian 

distribution. There are various methods for estimating the width of.such a 

Gaussian; Blunck and Westphal [lo] recommend 

(1.12) 

where & is the mean energy loss in the pathlength s, and & = 10 eV 
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There are several points to consider concerning the use of energy straggling 

corrections. First, the corrections are better when the step size is relatively 

small, however, we have seen that in small-angle scattering theories, the step 

size must be large enough to include enough collisions for the approximations 

to be va,lid. Secondly, most of the straggling is due to knock-on electrons of 

appreciable energy. If a Class II algorithm is used, these will be tracked as 

independent histories if they are above the threshold energy. However, if 

a method could explicitly account for the distribution pattern due to lower 

energy secondaries, there would be no need to induce a widening of an average 

energy loss. 

1.5.4 Strengths of Condensed History 

Numerous condensed history codes have been shown to have good agreement with 

experiment for high kinetic energies and in homogeneous materials. They are also 

quite efficient, with run-times only slightly longer than the times required for an 

analog photon Monte Carlo code running in a similar volume. 

1.5.5 Condensed History Weaknesses 

As was mentioned above, each of the fundamental assumptions upon which the 

condensed history algorithm rests begin to fail when the medium is a high atomic 

number material, when the kinetic energy of the primary particle becomes low, 

and/or when the particle encounters inhomogeneities in the medium [4]. 

1.5.6 Existing Condensed History Codes 

This section contains a brief introduction to a few codes that are presently available 

in the scientific community for doing 1Monte Carlo transport of electrons (as well 

as some neutral particles). Although this is by no means an exhaustive list, these 
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are codes that are reliably benchmarked and whose results are generally accepted. 

They are presented from the point of view of their suitability for use in radiotherapy 

simulation. 

ETRAN 

The ETRAN (Electron Transport) code was released in 1970 by Berger and Seltzer 

[F]. It uses Class I electron transport to treat both high a,nd lom-energy processes 

(nominally up to 1 GeV and down to 1 keV), accounting for fluorescence, the 

effect of atomic binding on atomic electrons, and energy-loss straggling. ETRAN 

makes use of Goudsmit-Saunderson multiple angular scatter distributions, which 

avoid the small-angle approximations intrinsic to Moliere. It uses a sampling of a 

Landau distribution for energy loss [2G]. In spite of its excellent accuracy for its 

time and availability, ETRAN went largely unnoticed for several years. A la,ter 

version of this code was released under the name Sandy1 [15]. 

MCNP 

The MCNP (Monte Carlo N-Particle) Code was developed at Los Alamos National 

Laboratory as a three-dimensional, time-independent, general purpose transport 

code [13]. It was released for public use and found application primarily in nuclear 

power plants and shielding problems. In the late 1980’s, electrons were added 

to the code, in a Class-I (ETRAN-like) package which gives the net flux through 

a zone or voxel. Since it was designed to work for many different applications, 

the Fortran- code ha,s many options (such a,s variance reduction schemes) which 

leads to a code which is very large and bulky. Many arrays in the code are zone- 

dependent; the code is suited best to geometries divided into 200-500 regions. (CT 

scans have on the order of 100,000 voxels.) The run times for typical radiotherapy 

problems for standard 1MCNP4A would likely be on the order of several hours, 
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which is too long to be acceptable for most routine clinical applications. 

More recently, however, MCNP has been used to model the dose distributions in 

boron-neutron capture therapy [27, 28, 29, 50, 371, which is an experimental treat- 

ment using beams of epithermal neutrons There have also been serious efforts to 

evaluate its use as a tool for modelling general photon and electron radiotherapy 

treatment planning [31, 331. Modifcations in photon transport for lattice geometry, 

as well as algorithm development for dose tallies have been undertaken by a group 

at the University of California Los Angeles [20]. A preprocessor called RTMCNP 

(Radia,tion Therapy MCNP) is also under development there, which will provide a 

convenient interface into the MCNP4A command structure for radiotherapy treat- 

ment planning calculations [20]. Since the run times are still too long for routine 

use, this system is not presently intended to replace conventional means of treat- 

ment pbmning. However, it could serve as an analysis t,ool for some cases, and as 

a, rhobust tool for further general algorithm development. 

EGS4 

History The Electron-Gamma Shower (EGS) code is a self-proclaimed “child 

of a thousand mothers and fathers” [41]. It originally evolved out of a Fortra,n 

code called SHOWER written in 1963 by Nagel for high energy electrons (<lo00 

MeV) incident upon lead in cylindrical geometry. The database was later extended 

to include any element and a number of compounds. In the early 197Os, it was 

further extended to include photon interactions by a group at Stanford University, 

and renamed EGS. At this time it was also translated from Fortran to an obscure - 

and since-dead6 - language called Mortran. The geometry was generalized through 

the use of a user-written routine. EGS3 was released in 1978 and soon became the 

industry standard for simulating electromagnetic cascades in various geometries 

‘It may he considered dead because its creator died and took most of its secrets with him; 
however, in the Latin SIXSR of a non-evolving language, it is still widely used. 
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at energies up to a few thousand MeV down to kinetic energies for electrons of 1 

MeV. The code was again considerably modified by Rogers and Bielajew in the 

early 1980s for energies as low as 10 keV (EGS4), making it suitable for medical 

applications. 

Transport Physics EGS4 uses Class II electron transport, with a stopping 

power with straggling for energy loss and with Moliere small angle scattering. 

The Moliere theory has been recently extended by Bielajew to free it from the 

need for > 20 scattering events per step. In fact, Bielajew has made it possible to 

use a version of Moliere to simulate single scattering [9]. In general; the condensed 

history steps are of variable size. An algorithm called PRESTA chooses large steps 

when the distance to the next boundary is large, and takes smaller steps as the 

boundary is approached, for better resolution of interfaces. It also uses a path 

length correction which takes into account the difference between the straight line 

approximation and the curved pathlength for each electron step, as lvell as a lateral 

correction at the end of a step. 

The following physics processes are taken into account by default [42] in EGS4: 

. Bremsstrahlung production, using the Schiff formula for angular distribution 

. Positron annihilation in flight and at rest 

l Moliere multiple and singular scattering 

. Moller (e-e-) and Bhabha (e+e-) scattering 

. Continuous energy loss between discrete, catastrophic, interactions 

- Total stopping power consists of soft bremsstrahlung and collisional loss 

terms 

- Collision loss determined by the (restricted) Bethe-Bloch stopping power 

with the Sternheimcr treatment of the density effect. 
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l Pair production 

. Compton scattering with binding effect correction 

l Coherent (Rayleigh) scattering included by means of an option. 

l Photoelectric effect (without fluorescent photons or Auger electrons) 

In addition, EGS4 provides many options, including 

l Electromagnetic Field transport 

l I< and L-shell fluorescence 

. Ability to “force” photon interactions 

. Variance reduction techniques: splitting and range rejection 

Application to Radiotherapy EGS4 tends to be used indirectly for radiother- 

apy applications, such as its use to generate “kernels” in the convolution method, 

“kugels” in the MMC method (which will be introduced in Section 1.6.1), and to 

model detectors. One of the most significant drawbacks of using EGS4 in a clinical 

setting, in addition to its bulky size, is that it is still relatively difficult to use. 

Users must learn Mortran to write two subroutines, for scoring and representing 

the simulation geometry. Using the code also relies on the use of Mortran macros 

to change aspects of the internal code, which is a complicated venture that is prone 

to error. Even so, EGS4 is used regularly by a community of an estimated 6000 

scientists [41]. It is an extremely well benchmarked code, and any code that hopes 

to establish itself in this area will certainly need to meet its performance standards 

before gaining acceptability. 

r 
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1.6 Local-to-Global Methods 

As the following section will attempt to demonstrate, in order to meet the demands 

of speed and accuracy for this application, it is possible to make the sacrifice in 

another - hopefully more atta,inable - arena: storage. This scheme is especially 

attractive given the fact that the application has been defined and requires only a 

rela~tively narrow subset of energy ranges and materials. 

1.6.1 Overview 

Recently another class of charged particle transport methods has evolved which 

could generally be classified as “Local-to-Global Monte Carlo” transport. They 

are based on the use of pre-calculated probability distributions representing the 

change in phase space a charged particle would have after exiting a given volume 

element. The probability distribution functions (PDFs) for an exit state, given a 

particular incident state, would be calculated by traditional, high-statistic runs of 

another Monte Carlo code. The process of generating these PDFs is referred to as 

the “local calculation” and the geometry over which the calculation is computed 

is the “local geometry”. The Local-to-Global Monte Carlo transport proceeds by 

advancing the particles through the medium during the global calculation in steps 

constrained to the size and shape of the local geometry. For each step, the incident 

phase space on the local geometry is the exit phase space of the previous step, until 

the particle is either below the cut-off energy or has escaped the global geometry. 

(In radiotherapy treatment planning problems, the global geometry is defined by 

the patient CT data.) This process requires a library of PDFs for a variety of 

incident energies and materials, each generated from a separate local calculation. 
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Macro Monte Carlo (MMC) 

The concept of Local-to-Global Monte Carlo was first proposed in the literature 

by Mackie and Battista [40] in 1984. In order to speed up electron transport, they 

proposed an algorithm called “Macro Monte Carlo” which would use cubical voxels 

as the local geometry. The incident state in phase space of an electron would be 

known, then it would “travel” through the cube as if the cube were a “black box” 

and the output state would immediately be sampled from a distribution of possible 

output states. These distributions would have been previously determined by a 

condensed history Monte Carlo code on a cubicA geometry. The transport would 

continue by placing each cube end to end, depositing energy along the way. The 

proposal was never implemented due to (what seemed in 1984 t,o be) unfeasibly 

mrge storage requirements to store the PDFs. In fact, with cubical geometry, the 

number of PDFs needed is rather large - for each incident condition, separate 

PDFs must be generated for at least two exiting direction cosines and two location 

variables. 

The Macro Monte Carlo method was implemented more recently (1991) by 

Eeuenschwander and Born [44], who reduced the storage required by using a more 

symmetric spherical local geometry. The spherical volume elements were dubbed 

“kugels”. (Kzlgel means @here in German.) Several other clever enhancements 

have made this method extremely fast and a viable option for clinical electron 

simulation [45]. 

The improved MMC algorithm features a variety of possible kugel sizes, so 

that smaller step sizes can be taken as a significant boundary is approached, which 

allows the user to get accuracy where it is important, yet take large, efficient step 

sizes through the homogeneous portions of the patient or phantom, as shown in 

Figure 2. In order for this to work efficiently, the volume is pre-processed and 

a density assigned to each voxel. Although the me-processing requires an initial 

r 
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computational investment, it is returned just a few minutes into the transport 

calculation. 

The MMC algorithm also uses energy partitioning across a boundary to take 

into account differences in collision stopping powers on both sides of that boundary. 

This provides a reasonably accurate and very fast way to deposit energy on either 

side of the boundary. 

For each material, kugel size and electron energy, the distributions of primary 

electrons emerging from the kugel are stored in 100 equi-probable bins for efficient 

sampling. Thus the determination of particle parameters after an MMC transport 

step is reduced to determination of a table index, which is much faster than random 

interpolation of cumulative PDFs. 

Secondary energy for both photons and electrons is relea,sed into the loca,l kugel 

and scored “on the fly”. Later it is smeared forward in the incident direction, 

exponentially attenuated a,nd deposited in a post-process ray-tracing step after 

the actual simulation. Like the pre-processing step, the post-processing step gives 

a large gain in efficiency. Although this type of secondary transport is extremely 

quick, it is also probably the most significant limitation on the accuracy of the 

MMC method. By not explicitly modeling secondary electrons, the MMC code can 

flatten out discontinuities in dose across interfaces. The secondary electrons are 

sensitive to changes in the scattering properties of different materials. Neglecting 

such changes can be important because they create “hot” and “cold” spots in the 

dose distribution, particularly in the vicinity of bone-tissue interfaces and tissue-air 

interfaces. Still, this method is superior to most other clinically used methods. 
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Figure 2: Transport in the Macro Monte Carlo Method with “kugels”. The arrows 

represent the electron trajectory at the source or exit position of the previous 

step, and the line through the kugels represents the energy deposition path, which 

extends from the incident point to the sampled exit point. 

1.6.2 Response History Monte Carlo 

1.6.3 Background 

The Response History Monte Carlo (RHMC) method, although pursued completely 

independently from the Macro Monte Carlo method, shares its underlying philos- 

ophy and a few of its design features. It was developed at Lawrence Livermore 

Laboratory (LLNL) in 1991 by Ballinger [3], a student from the University of 

Michigan working with Cullen, Perkins and Rathkopf of LLNL. It began a,s a mar- 

riage of an obscure “response matrix” Monte Carlo algorithm [59] and a Class I 

condensed history a,lgorithm. 

r 
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Local Calculation 

The local geometry in RHMC is a hemisphere, which was chosen because it was 

believed to be more suitable than a sphere for two reasons. First, the hemisphere 

easily matches boundary conditions for normally incident electron beams in the 

global calculation. Secondly, it avoids tracking backscattered electrons in the local 

calculation. These backscattered electrons add to the computation time without 

contributing much information to the overall probability distribution being gew 

erated; it is more efficient to tally them immediately as they cross the planar 

boundary. In addition, the hemisphere still allows a modest degree of symmetry 

for decoupling the energy and angle distributions. 7 

As with the MMC code, the RHMC code recognizes the competing interests at 

stake in the decision of local geometry size (step size); namely, the larger the size 

the worse the spatml resolution of the result, but the fa,ster the global calculation 

can proceed. 

The local calculation in RHMC is done using an analog (single scatter) code 

written explicitly for this use by Ballinger, rather than generating a PDF library 

from a condensed history code as was done in the Macro Monte Carlo method. The 

analog code is based entirely on LLNL databa,ses for cross sections, rather than on 

empirical approximations as is condensed history. Thus the RHMC method has 

the potential to replicate the accuracy of high-quality experimental and evaluated 

data. 

7This means that the electrons that reach the surface of the hemisphere have traveled approx- 
imately the fame distance, so that the electrons leaving the curved surface have then suffered 
approximately the same number of collisions so energy and trajectory are only loosely related and 
ca,n be treated independently. The backscattered electrons are considered a completely separate 
case in this method. 
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Treatment of Secondary Particles 

Unlike typical Class I transport algorithms, RHMC does permit knock-on electrons 

to be tracked as regular (primary) histories. The knock-on electrons are recorded 

in separate PDFs during the local calculation, and these distributions are sampled 

in the global calculation to determine the “birth state” of the knock-on. There is 

no capability to model bremsstrahlung in the RHMC algorithm, proba,bly because 

it was designed for use in low-energy regimes where brernsstrahlung interactions 

do not account for an appreciable fraction of the total cross sect,ion. 

Strengths of Response History 

The most significant strength of RHMC is its analog-type accuracy at a fraction 

of the time required to do an analog calculation. Since the hemispheres are quite 

small in sire, it is able to attain excellent spatial resolution. It is one of the few 

codes in existence that has been shown to model backscatter realistically, which 

has great appeal for radiotherapy applications that involve inhomogeneities. 

Weaknesses of Response History 

The RHMC code was designed as a proof-of-concept type code; and is not suitable 

for radiotherapy simulation in its present form for several reasons. First, the energy 

range of its database is not well-represented at energies above 1 MeV, since RHMC 

was designed to perform well at lower energies. Secondly, the only materials that 

are immediately available in a form that can be read by the code are aluminum 

and gold. These elements were chosen as an example of high Z and relatively low Z 

materials (by nuclear transport physics standards) for which an extensive amount 

of experimental data for benchmarking was readily available. A much more serious 

limitation is that the RHMC code does not explicitly model bremsstrahlung events, 

since it handles this energy loss in a Class I - type manner (i.e., the energy is locally 

r 
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deposited, which is not a good approximation for photons). 

1.7 Comparison of the Monte Carlo Methods 

Like everything else, finding the best Monte Carlo method is an exercise in weighing 

tradeoffs. Methods that are fast a,re often less accurate, and methods that are 

accurate tend to be slow. There is also an intermediate, the Local-to-Global Monte 

Carlos, which are relatively fast and accurate, but which require a substantial 

amount of storage space in compensation. 

1.7.1 Speed 

In general, for Monte Carlo codes, the time required to complete a run on a given 

platform can be expressed as 

T run = t@ * nsteps/history * %istoG (1.13) 

Assuming the nh&,ries is constrained by the statistical accuracy required for 

the answer (although variance reduction methods can decrease this factor), the 

fastest codes will be those which economize on the time required for each step 

and/or require less steps for each history. 

The Macro Monte Carlo method was built to require fewer steps per particle 

history, which allows it to excel in speed. The time per step is also minimal, since it 

consists mainly of sampling PDFs rather than doing calculations. The condensed 

history methods are intermediate in speed, requiring times that are still generally 

too long for clinical use, but within the realm of possibility in the next few years, 

especially if special hardware is implemented and/or variance reduction and other 

statistical biasing can be used. Response History Monte Carlo run times are on 



1.7. COMPARISON OF THE MONTE CARLO METHODS 33 

the order of that required for condensed history (primarily due to the small step 

sizes used), however RHMC is more accurate. 

1.7.2 Accuracy 

All of these codes perform approximately equally well in terms of accuracy for a 

homogeneous phantom. It is more interesting and realistic to benchmark inhomo- 

geneous phantoms. The condensed history methods lose accuracy when the energy 

range of interest extends below about 100 keV and in regions around an interface 

differing in atomic number [3] due to underestimation of backscatter. The Macro 

Monte Carlo method suffers from the same shortcoming a,s long as it is using prob- 

ability distribution functions (PDFs) generated by a condensed history code (at 

present its benchmarks were done using EGS4 data). It should be pointed out that 

this method has the potential to read PDFs from other, more accurate sources as 

well, although it still has other shortcomings in this area, like its treatment of 

secondaries and its large kugel sizes (on the order of several millimeters). The 

Response History method, on the other hand, was especially designed for high- 

accuracy results. The fact that it is based on a single scatter code and that its 

“local geometry” (hemispheres) is relatively small (on the order of microns) gives it 

an advantage over the other methods, especially at low incident energies and when 

backscatter from interfaces is important. The most accurate simulation method 

available today is the analog or single scatter method [4]. 

1.7.3 Storage 

There are two factors that affect the storage and/or size of a code: versatility 

and speed. The dramatic speed-up of the RHMC and MMC methods over single 

scatter and condensed history codes, respectively, are obtained at the expense of 

storing the pre-calculated results of another slower code. However, both of these 
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Table 1: A comparision of various features of electron transport in Monte Carlo 

codes introduced in Chapter 1. 

Algorithm Condensed History Condensed History Local to Local to 

Class II Class I Global Global 

Code EGS4 ETRAN/MCNP4A MMC RHMC 

Angular Moliere Goudsmit-Saundersoll from from 

scatter > 20 events No small 8 approx EGS4 Analog 

Model small 8 approx. Legendre poly-. code 

Energy restricted stopping Landau Distribution from from Analog 

LOSS power aSS”lnFS &ind << E EGS4 code 

straight- straight- fnxn from 

Location line line An&g 

approximation approximation EGS4 code 

Secondal-y generated by none, but smeared forward xinle as primq 

Electrons Bhabha-Moller E loss included in at end of if escape 

cross-sections Landau distribution simulation local geometry 

Step Size variable steps: steps of spheres: hemispheres 

and Shape 1% - 20% E loss predetermined length L’ = .05-.3 cm IOF - 10-3 cm 

Energy 100,000 MeV - 100 MeV - 20 MeV 200 keV 

Range 10 keV 100 keV 200 keV binding energy 

codes were built for specific applications, while most other condensed history codes 

are large in order to be useful in a variety of situations. Furthermore, the cost of 

memory is decreasing at such a fast rate (about a factor of two every five years) 

that this concern is probably not a,s binding as the concerns of speed and accuracy. 

1.7.4 Summary 

The characteristics of the various algorithms are briefly summarized in Table 1 
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1.8 Recent Developments 

There have been at least two recent efforts to make Monte Carlo calculations 

routinely available for radiation treatment planning. 

1.8.1 The OMEGA Project 

The Ottawa - Madison Electron - Gamma Algorithm (OMEGA) project is a multi- 

year study under&ken jointly by the University of Wisconsin - Madison and Na- 

tional Research Council of Canada (NRCC). The purpose of the project is to 

routinely calculate the dose from electron beams in clinical-type situations using 

Monte Carlo. Presently, this is accomplished primarily through the EGS4 code. 

The OMEGA group has broken down the problem of radiotherapy dosimetry 

into two specific areas: (1) characterizing the beam a,s it exits the accelerator and 

passes a,n arbitrary scoring plane, which is different for each treatment machine 

but the same from patient to patient; and (2) transporting the radiation from 

this scoring plane through beam shaping devices, which may change with each 

treatment, and patient anatomy. This division is illustrated in Figure 3. 

In order to transport the electron beam through the treatment head of the 

accelerator, a new EGS4-based code system, BEAM, was written. BEAM pro- 

vides information about both the incident energy and the angular distribution of 

electrons at the scoring plane. Each head configuration can be simulated once, 

then the histories can be started at the scoring plane. The second part of the 

project has resulted in a Monte Carlo code, DOSXYZ, integrated with a 3D ra- 

diotherapy treatment planning system which was developed at the University of 

Wisconsin. Much of the work on the MMC code, discussed in Section 1.6.1, was 

carried out as part of the OMEGA project. These tools are presently being used 

for electron-photon transport in patient volumes and test phantoms. 

r 
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beam axis 

1 7 

scattering foil 

I 
ion chamber 

primary collimation 

phase space plane 

patient-specific beam shaping 

patient anatomy 
(CT scan) 

Figure 3: Two separate portions of the problem of radiotherapy simulation 
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1.8.2 The Peregrine Project 

Peregrine is a 3-dimensional Monte Carlo code developed at LLNL specifically to 

address the problem of radiotherapy simulation. It was designed to track particles 

through a regular Cartesian mesh based on the CT scan, at the same resolution. 

It is intended to be computationally fast enough to be acceptable for routine dose 

calculations. 

Peregrine breaks the problem of radiotherapy simulation down in a manner 

similar to that of OMEGA, and has source models which are derived in a sepa- 

rate computation from OMEGA’s BEAM code and MCNP4B 151, 16). The source 

models approximate the spectral output of the accelerator at an arbitrary trans- 

verse plane downstream of the electron target, flattening filter, primary collimator, 

and monitor chamber. 

The simulation proceeds by sampling the energy and trajectory of an emitted 

particle, doing simplified transport through the collimators and any other aper- 

tures, blocks, or wedges, until the particle reaches the the patient, where Monte 

Carlo calculation of dose deposition is done. 

Peregrine is designed to run on its own hardware in conjunction with an existing 

client treatment planning system. 

1.9 Scope of this Work 

The initial impetus of this work was to see if Peregrine, like OMEGA, could benefit 

from a Local-to-Global approach to electron transport. 

The process will be unfolded in the chapters to come. Basically, the MRMC 

method combines the strengths of the previous work in this area. The local stage 

is ba,sed largely on Ballinger’s work. The geometry was changed from hemispheres 

to spheres, a wider range of materials n-as included, a newer version of the EEDL 
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database was used, and the benchmarking empha,sis wa,s on energy deposition in 

slabs as opposed to low-energy phenomena like backscatter. 

The global stage was based largely on Neuenschwander’s work, with some dif- 

ferences. The MRMC stepping routines were coupled to a version of Peregrine for 

gamma transport. The electrons are incident in the center of the kugel, rather 

than the edge, for better symmetry. Secondary electrons that escaped the kugel 

are transported in the same manner as primaries. The energy deposition algorithm 

was designed to spread energy out across many zones, to somewhat compensate 

for the increased CPU time required by explicit transport of secondaries. 

Chapter 2 is a description of the first step in designing a new Local-to-Global 

electron transport package with single scatter physics as its foundation. The code 

that was written to fill this need, CREEP (Code for Reconstruction of Exact 

Electron Progression), is introduced. The physics it simulates, the assumptions it 

contains, the logic flow, and the results obtained with it are discussed in detail. 

Chapter 3 will discuss the MRMC library - the collection of kugel data sets 

generated by CREEP. It details the quantities selected for tallying, the binning 

of the kugel surface and the binning of the individual probability distributions. 

The layout of the library is shown, as well as several examples of methods to run 

multiple kugel sizes efficiently. Memory requirements are also discussed. 

Chapter 4 discusses a practical, efficient application of CREEP through a global 

stepping code. The logic flow, the quantities sampled from the kugel data library, 

and various algorithms for energy deposition and boundary crossing are discussed 

in detail. 

Chapter 5 shows a series of test problems that were designed to evaluate spe- 

cific features of this method. The depth dose results for several simple phantoms 

obtained by MRMC and condensed history Monte Carlo are shown and analyzed. 

Chapter 6 contains the summary and conclusions of this research, as well as 

some suggestions for future work. 



Chapter 2 

Single Scatter Electron Monte 

Carlo 

2.1 Introduction 

This chapter describes the single scatter Monte Carlo (SSMC) code, CREEP, that 

serves as the local phase of MRMC transport. Although its primary purpose is 

to compile the probability distribution functions (PDFs) necessary for the global 

phase of MRMC transport, the code has also proven to be interesting in its own 

right. The following sections describe the physics algorithms and databases used 

by CREEP, as well as a number of results that were obtained with the code. 

2.1.1 Why Single Scatter? 

Single scatter physics is gaining attention for electron transport, despite the 

fact that it is inherently very time consuming. One reason is that since single 

scatter ca,lcuIations conform (more) closely to the physical processes the electron 

undergoes, they can serve as a means to explore the validity of assumptions used in 

other transport techniques. In particular, single scattering can help make efficient 

electron transport methods, like condensed history and local-to-global methods, 

more accurate. 

SSMC allows large angle scatter and backscatter measurements to be calculated 

with greater accuracy in a reliable manner. Large angle scatter and backscatter, 

39 
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being rela,tively rare, result in much of the seemingly eccentric energy deposition 

behavior of electron beams (and photon beams for that matter, since photons 

deposit their energy to the medium through secondary electrons), including lateral 

blooming with distance and nonuniformities (“hot” or “cold” spots) found near 

changes in the medium type or density. 

2.1.2 The EEDL Database 

The Evaluated Electron Data Library (EEDL) was established at LLNL by 1990 to 

complement the ENDL (Evaluated Nuclear Data Library) and EPDL (Evaluated 

Photon Data Library). Complete documents detailing its contents, with deriva- 

tions, are available [17, 48, 491. Cross sections for each atomic subshell, for each 

interaction, are tabulated on an energy grid with a variable pla,cement of points 

between 10 eV and 100 GeV, for atomic numbers 1 to 100. 

The elastic scattering cross sections are based on those of Mott for energies 

greater than 256 keV and of Riley below 256 keV. These data were then extrapo- 

lated to cover the entire energy range. Spectra, in the form of probability distri- 

bution functions (PDFs), of angular deflections for a variety of incident energies 

are also tabulated. 

The impact ionization cross sections are ba,sed on the Moller formalism with 

other corrections to accurately model small energy loss collisions. Energy loss 

spectra are available at a number of incident energies for individual ionization and 

bremsstrahlung events, as well as the spectral average energy loss. 

The bremsstrahlung cross sections were determined by Seltzer and Berger [54] 

by interpolating between the relativistic data from the code of Tseng and Pratt 

[58] available up to 2 MeV, and the results of Bethe-Heitler, expected to be valid 

above 50 MeV. 

The excitation database contains cross sections and the average energy loss to 
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excitation as a function of incident energy. There are no spectral data for excitation 

energy loss in EEDL at this time. A summary of the databa,se features that were 

used at some point in CREEP can be seen in Table 2 and Table 3. 

It should by noted that an independent, simpler electron single scatter code, 

also based on the EEDL data, was written by Ballinger [4] in 1991 at LLNL and 

provided a strong foundation for this work. 

2.2 Physics Algorithms 

The CREEP code is written in FORTRAN and C, in a very simple style with 

the intent of being extremely portable. Since this code is intended primarily as a 

means to explore basic physical properties of the medium, the present inca,rnation 

assumes only simple geometries: either spherical (user specifies radius) or sla,b (user 

specifies x, y, z), consisting of one type of material. Several sla,bs may be pieced 

together to simulate a layered geometry, since the output of one slab may be used 

as spectral input into a neighboring slab, and the backscattered energy spectrum 

from the each interface can be transported backwards into the prior medium. 

2.2.1 Simulating Individual Electron Interactions in Media 

The algorithm for a single scatter charged particle code is ba,sically the same as 

the algorithm that has historically been used in photon and neutron Monte Carlo 

codes. Briefly, one finds the distance to interaction by finding the total cross 

section at the present energy and uses the relation s = -Xln(x) , where 2 is a 

random number on the interval (0,l). One then determines which interaction took 

place, by forming and sampling from a cumulative probability based on the cross 

sections for each of the four possible interactions (ionization, excitation, ela,stic 

scatter, bremsstrahlung). The energy, position and trajectory of the particle is 

r 



42 CHAPTER 2. SINGLE SCATTER ELECTRON MONTE CARLO 

Table 2: Some relevant contents of the EEDL database for an element. Elements 

with atomic numbers 1 - 99 are available in the database. All energies are in MeV; 

cross sections are in barns. P is the differential probability of the particle out for 

each of the appropriate distributionsThe integer labels represent flags EEDL uses 

to identify the interaction, data type, and outgoing particle. 

Interaction 

8 

elastic scatter 

8 

elastic scatter 

8 

ehrstic scatter 

8 

elastic scatter 

81 

ionization 

81 

ionization 

81 

ionization 

81 

ionization 

Type of Data 

0 - Integrated elastic 

cross section 

10 - average energy 

given to residual a,tom 

10 - average energy 

after event 

21 - scatter angle 

distribution 

3 - Integrated ionizatior 

subshell cross section 

10 - average energy 

after event 

10 - average energy 

after event 

21 - spectrum of 

secondary energy 

Particle Out 

0 

(none) 

11 

residual atom 

9 

“primary” e- 

9 

“primary” e- 

0 

(none) 

9 

“primary” e- 

19 

“knock-on” e- 

19 

“knock-on” e- 

EEDL Columns 

E,,, , < 1 - co.+3 > , P 

Ein , -=c &on > 

Ein , < Ekon > , P 
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Table 3: Some relevant contents of the EEDL databa,se for an element. Elements 

with atomic numbers 1 - 99 are available in the database. All energies are in MeV; 

cross sections are in Barns. P is the differential probability of the particle out for 

each of the appropriate distributions. The integer labels represent flags EEDL uses 

to identify the interaction, data type, and outgoing particle. 

Interaction 

82 

bremsstrahlung 

82 

bremsstrahlung 

82 

bremsstrahlung 

82 

bremsstrahlung 

83 

excitation 

83 

excitation 

Type of Data 

0 - Integrated brem 

cross section 

10 - average energy 

after event 

10 - average energy 

after event 

21 - spectrum of 

secondary energy 

1 - Integrated excitatio 

cross section 

10 - average energy 

given to residual atom 

r 

Particle Out 

0 

(none) 

9 

“primary” e- 

7 

brem photon 

7 

brem photon 

0 

(none) 

11 

:esidual atom 

EEDL Columns 
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updated to reflect the chosen interaction in a manner described for each below. 

Then the same process is begun again, provided the electron has not escaped the 

medium or fallen below the energy cutoff. 

CREEP is actually a family of four codes, having a similar ancestor code but 

they have evolved separately to fill specific niches. SlabcreepI, was written for the 

purpose of benchmarking with slab and foil experiments. Slabcreep does the same 

but for media that are not comprised of a single element; it handles compounds 

and mixtures (see Section 2.2.2) and was primarily designed as a means to compare 

the CREEP method with other codes and experiments for generating depth-dose 

curves in water, which is the most important medium for radiotherapy applications. 

The ultimate application for CREEP was to generate a library for the Macro 

Response Method (MRMC), for which probability distribution functions arising 

from transport through a sphere are required. Thus KugcreepI and KugcreepII 

were born; the former for single-element materials and the latter for compounds 

and mixtures in spherical geometry. It would have been possible to merge the 

codes, however, the decision was made to keep them separate in the interest of 

efficiency. 

The flow chart illustrating the general logic of the codes is shown in Figure 4. 

For both the slab-geometry code and the spherical-geometry kugel code, there are 

two types of input files. The first is a very simple user-generated file explaining 

the Monte Carlo tracking parameters, the medium, and the output information 

desired. The second type of information files required is the EEDL datafile for 

each element in the medium. 

The CREEP code deviates from the ideal single scatter algorithm in that (for 

most applications) it does not simulate every excitation event individually. In- 

stead, it subtra,cts off the expected excitation loss after each of the other events, 

as described in the excitation section below. This choice was made because it was 

demonstrated bhat there was little to gain by direct simulation of excitations, since 
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Figure 4: The logic flow of the CREEP analog electron scatter Monte Carlo code. 

When an electron reaches a “kill” box, its residual energy is deposited locally and 

another electron is initiated from the bank. 
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they do not have a large effect on the electron trajectory, and the amount of the 

overall energy loss to this mechanism -although it can be large - is predictable. Us- 

ing the pathlength-based expected loss also makes the results statistically smoother 

for the same number of histories. 

Ionization 

Ionization interactions arc a dominant energy loss mechanism for electrons slowing 

down from the radiotherapy energy range. They occur when a charged particle 

imparts enough of its kinetic energy to a orbital electron to set that electron free. 

This process is illustrated in Figure 5. Once the electron is free it is called a “knock- 

on” electron or “delta-ray”. For incident electrons, the interaction is often pictured 

as a “black box” in the vicinity of an atomic electron with two electrons exiting. 

Because electrons are indistinguishable from each other, it is simply assumed that 

the electron with the higher exit energy was the primary electron, making the 

remaining electron the “knock-on”. With this definition, the maximum energy a 

knock-on electron can have is given by 

To - Eta 
TL~,nzar = 2 (2.1) 

where Ebind is the binding energy of the shell from which the knock-on was freed. 

To simulate an ionization interaction, the knock-on electron energy is sampled 

from a spectrum. The EEDL databa,se has a number of spectra tallied for various 

incident energies; statistical interpolation is used to choose between them. Once 

the energy of the knock-on ha,s been selected, 2-body kinematics (neglecting bind- 

ing energy) are used to update the primary electron’s trajectory. If Ko = T,/moc’ 

and the ratio x is defined by x = Tknockon/To , then the outgoing angles are given 

by 
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Figure 5: An ionization interaction resulting in the liberation of an atomic electron. 

The electron is incident with energy TO, and exits with Tpri after setting a knock-on 

of energy Tkon. 
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COSO~,,.~ = J 
x(IcD + 2) 
XI& + 2 

and for the knock-on electron 

(2.2) 

(2.3) 

CO&ml, = J 
(1 ~ x)(Kl + 2) (1 ~ x)Iio + 2 , (2.4) 

Note that because the binding energy is neglected, these angles are less va,lid at 

energies near it. Since such electrons don’t travel far, this assumption does not 

have a large impact on the overall transport results. 

CREEP handles secondary electrons by putting the primary on a memory stack 

and tracking the knock-on immediately, until they fall below the energy cutoff or 

escape the volume, at which point the prima,ry history is continued. A special 

energy cutoff parameter is used for knock-ons, so the user can readily imitate Class 

II condensed history codes, which only simulate ionization events if the knock-on 

is above a particular energy. 

Presently it is assumed that all binding energy is locally deposited. For ar- 

bitrary media, this assumption is weak since significant fractions of the binding 

energy may be re-emitted as Auger electrons or fluorescent x-rays. Many of the 

x-rays are emitted at energies that fall just below the photoelectric edges, where 

the cross-sections are small and they can therefore carry their energy rela,tively far 

from the interaction site. However, the atomic de-excitation of low atomic num- 

ber materials is dominated by Auger electron production, which do not travel far. 

Since tissue is mainly of low atomic number, the local deposition approximation is 

justified for this application. Another LLNL database, EADL (Evaluated Atomic 
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Data Library) contains all the necessary information to model these relaxations 

physically, but is not incorporated into the code at this time. 

Elastic Scattering 

In e&tic scattering interactions, an incident electron traveling in the vicinity of a 

nucleus scatters off the nucleus at some angle without a significant loss in energy, 

due to the la,rge ma,ss difference between the two. However, each scatter does cause 

a (generally) modest angular deflection. This is illustrated in Figure 6. Due to its 

large cross-section, the net effect of elastic scatter on a particle’s trajectory can be 

very significant, as is demonstrated by Figure 7. 

Figure 6: An illustration of an elastic scatter interaction. The electron is deflected 

through an angle t’ with no energy loss. 

The cross section for ela,stic scattering as a function of solid angle is given by 

the McKinley-Feshback form of Mott scattering in the expression 

(2.5) 
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8.0 

300 keV e- on Beryllium 
Normal Incidence 

1 --.-- Full Physics 

Fraction of Mean Range 

Figure 7: An example of the effect of elastic scatter angles on energy deposition 

versus depth in beryllium. The “no elastic scatter” curve was made by reassigning 

the scatter angle to 0 after each ela,stic event. Its shape approximates the “Bragg 

peak” formed by heavier charged particles, but with a remaining width that is a 

function of (1) energy straggling, discussed in Section 1.5.3 and (2) scatter angles 

due to ionization interactions, given by equations 2.2 and 2.4. The mean range for 

300 keV electrons in beryllium is 0.1037 g/cm2. 
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(2.6) 

where 2 is the nuclear charge, e is the electron charge, and the term outside of 

the square brackets is the Rutherford scattering term. Note that the cross section 

depends inversely on the square of the rest mass of the particle, so heavy charged 

particles, like protons or ions, scatter much less than electrons and positrons. 

To simulate this event, one samples a scattered angle from EEDL (where it is 

tabulated as 1- cos0) and updates the trajectory. Although most elastic scattering 

results in only a small angle, it is this mechanism that is largely responsible for 

the phenomena of backscatter and large angle scatter. 

Bremsstrahlung 

Bremsstrahlung interactions occur when the electron passes near the nucleus and 

accelerates due to the interaction of their Coulomb fields, causing a photon to be 

emitted. A schematic of this process is shown in Figure 8. Although low energy 

photons are more likely, an electron can lose up to all of its energy to the photon. 

As an energetic charged particle of mass mO and charge ze passes in the vicinity of 

a nucleus of mass 144~ and charge Ze, there will be an electrostatic force between 

the two particles due to the interaction of the Coulomb fields, given by 

(2.7) 

The incident charged particle will experience an acceleration due to this force of 

magnitude 

(2.8) 

r 
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where T is the separation between the particles and K. is a fundamental electro- 

magnetic constant = (47rta)-‘. Assuming the mass of the charged particle is small 

compared to the nucleus, the nucleus does not move significantly as a result of 

the force in equation 2.7. However, the force will cause the charged particle to be 

deflected from its path and momentarily orbit around the nucleus. An accelerated 

charge radiates energy at a rate proportional to the square of its acceleration 

Equation 2.9 illustrates several important concepts governing bremsstrahlung emis- 

sion. First, it is apparent that it is much more common for light particles such 

as electrons to emit photons than it is for heavier pa,rticlcs like protons, due to 

the l/m: dependency. Secondly, it can be seen that bremsstrahlung is much more 

important in high atomic number materials (due to the Z2) than in low atomic 

number materials. In principle, it is possible to have bremsstrahlung created in 

the field of an atomic electron, but the probability is much lower, since the charge 

(and therefore the acceleration) is less. 

A more exact equation for the differential cross section was derived by Schiff 

[52]. The basic dependencies shown in equation 2.9 can be seen in his result, 

which is expressed in terms of a reduced angle, z = T&/m~c’, where 00 is the 

angle between the photon and the incident electron trajectories: 

a(k,x) = 
4x2T 

(x2 -t 1)2T,2 - (x2 + 1)“Ta 1nM(z) I 
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Figure 8: A electron giving rise to a bremsstrahlung photon in the field of a 

nucleus. The electron is incident with energy To and scatters through an angle /I 

with outgoing energy T creating a photon of energy hv. 

and k = hv = To - T, the energy of the bremsstrahlung photon. 

The exact rate of energy loss by bremsstrahlung depends on the quantum me- 

chanical nature of this interaction, which is beyond the scope of this work (see, for 

example, Tsa,i [57]). However, for energies less than 100 MeV, the energy loss may 

be estimated by the equation 

N ZTo II 4p e 1 
O-ET 

ln v-0 + mac2) -- 
7110C2 1 3 ’ (2.13) 

where N, = (N,JZ)/A, which is the number of electrons per gram, To is the 

kinetic energy of the incident electron, and ~0 is the cla,ssical electron radius 

(To = 2.81794 x lo-l5 m). The important physics revealed by this equation is 
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that energy loss increases directly with atomic number of the material, and the 

loss increases to a somewhat greater extent with the energy of the electron. 

In bremsstrahlung interactions, the initial momentum of the incident particle 

becomes shared between the scattered charged particle, the atomic nucleus and 

the emitted photon. Therefore, the photon can have any energy up to hv,,,,, = Tn. 

In this manner charged particles, especially electrons, have a small probability of 

losing almost all of their energy in a single interaction, however, this only occurs at 

extreme relativistic energies. At such energies, both the photon and the scattered 

charged particle advance preferentially in the forward direction. For moderate 

energy charged particles, however, the photon carries only a very small momentum 

and can be emitted in any direction. 

In CREEP, the photon energy is sampled from a spectrum, and an empirical 

relation can be used to determine the cosine of the scatter angle, cosl.~, the electron 

travels through a,s a result of the interaction: 

cosp = 1 - (Tmfc;v 
mOc2 

- -)> 
0 TO 

where TO is the kinetic energy of the incident electron at interaction site, i.e., the 

energy lost to excitations from the previous step to the present location has been 

subtracted. 

The “birth” angle of the bremsstrahlung photon is more difficult; it is most 

correctly obtained by sampling the Schiff formula 1521, but CREEP uses the ap- 

proximation 

where the denominator represents the total energy of the electron at the site before 

the event. 
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CREEP itself does not track the bremsstrahlung photons tha,t are created; 

they are tallied on the spot so that their phase space can be banked and passed 

off to another Monte Carlo code with photon tracking capabilities. Note that any 

additional electrons the bremsstrahlung photons would have generated are lost, 

so CREEP ca,nnot assume any energy deposits arising from photons. If, however, 

CREEP is coupled with a photon MC code in a way that allows that code to pa,ss 

back further secondary electrons these can be restored. It should be noted that the 

bremsstrahlung photon is much more penetrating than the charged particle that 

caused it, and therefore carries its energy far from the original charged particle 

track. Monte Carlo codes that neglect bremsstrahlung interactions thus fail to 

model this energy deposition pattern accurately. 

Excitation 

The primary charged particle can excite an atom even thought it does not impart 

enough energy to the atomic electron to free it. Instead, the energy transferred to 

the atom causes the orbital electron to be promoted to a higher electronic state. 

This is illustrated in Figure 9. The promoted orbital electron relaxes either by 

producing characteristic radiation of energy 1~; or by producing Auger electrons 

of energy hv - Rebinding; or transferring the energy to molecular vibrational modes 

at higher energy. Since the energies involved are typically very low compared to 

the energy range of interest, the individual events are often not modeled and the 

energy that is given to them is instead considered to be locally deposited. In fact, 

these events may be lumped together a,nd assumed to cause a uniform energy loss 

per unit distance. This is an “excitation-only” stopping power. 

In CREEP, the energy loss due to excitations can be accounted for by finding 

the total excitation cross section at current energy, and using the mean energy lost 

to excitation events at that energy to construct an excitation-only stopping power 
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Figure 9: A incident electron causing an atomic electron to become promoted into 

a higher electronic state. The incident electron has given up a small amount of its 

energy, Ta - T, equal to the difference in energy levels. Some of this energy may 

be re-emitted as Auger electrons or fluorescent photons. 

through the relation 

(2.16) 

where N* is Avogadro’s number, A is the atomic weight, p is the density, o,, is 

the total excitation cross section (summed over all subshells), and Z& is the mean 

energy loss due to excitation at a given primary energy. This stopping power is 

multiplied by the distance between the last event and the present event to get the 

energy lost to excitations in transit, which is subtracted from the electron’s energy 

before calculating the distance to the next event. 

Another option for modeling excitation is to treat it in the same analog manner 

as the other interactions. There is no deflection angle, and, rather than sampling 

from a spectrum of possible energy losses, the average energy loss per event (for 

an electron of the current energy) is used. As can be seen in Table 3 the spectral 
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energy loss distributions for individual excitation events is not available at this 

time. 

2.2.2 Compounds and Mixtures 

A special version of the CREEP code handles all compounds and mixtures by 

combining the EEDL element data using Bragg additivity of cross sections. This 

met,hod was originally introduced for determining the stopping power of a com- 

pound by computing a weighted sum of the stopping powers of the atomic con- 

stituents of the compound, and was recently described in ICRU 37 [47]. To compute 

the total cross section of a compound, o, the additivity rule takes the form 

0 = C ?LJjOj, (2.17) 
3 

where Wj is the fraction by weight and oj is the cross section of the jfh atomic 

constituent. 

To use the compound/mixture version of CREEP, the user must enter weight 

fractions of each element in the compound or mixture, and the density for the 

compound. This simple approach does not account for any chemical binding effects, 

which start to become important near the binding energy of the medium, or other 

effects arising from the chemical state or neighboring molecules in the medium. 

The algorithm is the same as that described in the beginning of the previous 

discussion for elements, except that once the distance to the next interaction is 

found, the next step is to select which medium the electron will interact with (by 

comparing a random number to their mass-fraction weighted cross sections) and 

then selecting the type of interaction as usual within that medium. 

r 



58 CHAPTER 2. SINGLE SCATTER ELECTRON MONTE CARLO 

2.3 CREEP Results 

The benchmarking of CREEP results with experimental data for a variety of el- 

ements and select compounds and mixtures, over the energy range of the EEDL 

database, is a large effort that is still in its infancy. There are many possible 

outputs of this code to be analyzed; some of which can be readily compared to ex- 

periments and theoretical models. Other information has no feasible experimental 

equivalent and as such is of interest primarily in a qualitative sense (such as “event 

maps” which plot interaction sites for all types of interactions). A few examples 

of both quantitative and qualitative results are shown in the remainder of this 

section. 

2.3.1 Backscatter Studies 

Historically, backscatter has been difficult for condensed history codes to simu- 

late correctly. Figures 10 and 11 show two examples of backscatter information 

generated by CREEP compared to experimental values. The agreement is within 

less than a percent for the backscatter coefficients. For the backscattered energy 

spectrum, the binning structure within CREEP was chosen to match that of Dar- 

lington [19], and the the agreement with those results is very close: the maximum 

deviation is approximately 0.2%, with CREEP being consistantly slightly higher 

than Darlingtion. The results from Kanter [34] show a similar overall shape, but 

a magnitude that is consistantly S-10% higher than CREEP or Darlington. 

2.3.2 Transmission Studies 

Figures 12 and 13 strikingly illustrate both the strengths and the limitations of 

the present version of CREEP. For each of the four curves shown, an electron of 

relatively low energy (not more than 500 times the binding energy) is incident 
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Comparison of Backscatter Percentages in Thick Al 
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Figure 10: CREEP backscatter percentage (including backscattered secondary 

electrons) compared to the experiments of Darlington 1191 and Neubert 1431. 
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Figure 11: The backscattered energy spectrum resulting from a 10 keV electron 

impinging on the surface of an aluminum slab that is large in x, y, and z com- 

pared to the mean free path of the incident electron, compared to experiments of 

Darlington 1191 and Kanter 1341. 
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Figure 12: The exiting energy loss spectra after 32 keV electrons are transmitted 

through gold (Z=79) slabs of two different thicknesses: 2.87 x 10e6 cm (approx- 

imately 10 mean free paths) and 5.74 x 10u6 cm (approximately 20 mean free 

paths). 
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Figure 13: The exiting energy loss spectra after 32 keV electrons are transmitted 

in tantalum (Z=73) for a constant thickness of 3.0 x 1Om6 cm at two different 

energies. See text for discussion. 
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on a thin slab (not more than 20 mean free paths) and the amount of energy 

each electron lost after having traversed the slab is tallied. Traditional energy 

loss distributions described in Chapter 1, such as the Gaussian having the width 

given in equation 1.12, would predict a wide, smooth distribution. SSMC gives a 

highly structured, asymmetric distribution, explained below. Both distributions 

have mean values equal to the stopping power predicted loss. 

The first distinctive feature of the curves in Figures 12 and 13 is a zero- 

amplitude region in the low energy loss region, implying that no electrons esca,pe 

without losing at least some energy, due to the continuous nature of the excitation 

loss model given by equation 2.16. This region ends abruptly at the energy loss 

that corresponds to the excitation-only stopping power times the thickness of the 

slab, where a sharp peak is seen. The peaks are due to electrons that escape the 

slab without undergoing any ionization (or bremsstrahlung) events. The sharp- 

ness of these peaks is therefore an artifact resulting from not modeling individual 

excitation events. 

The next distinctive feature of these curves is a gap of low amplitude following 

the peak. This discontinuity is due to the binding energy of the material, which, 

for gold (Z=79) is 8.3 eV and for tantalum (Z=73) is 7.31 eV. If an electron doesn’t 

escape without ionization, it must give up the binding energy (in this code locally 

deposited in the medium), which explains the lack of electrons seen until the low, 

broad peak. The shoulder on the large-energy-loss side of this peak rolls off very 

gradually, as there is progressively smaller probability of multiple ionization events 

and/or single large energy loss events. 

2.3.3 Energy Deposition Curves 

Comparisons of the CREEP single scatter Monte Carlo (SSMC) code with experi- 

ment are shown in Figure 14 - Figure 20. The points attributed to Lockwood et al 
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are from ca,lorimetric measurement [38]; the comparisons are absolute. Depths are 

reported a,s a fraction of the CSDA range of the electron, which were taken from 

ICRU Report 37 [47]. 

When assessing CREEP’s agreement to each of these calorimetry curves, it 

is important to bear in mind the thickness of the calorimeter, which is given in 

the legend for each figure. At low energies, this thickness can represent as much 

a,s nearly 30% of the range of the the electron, such tha,t the resolution of the 

energy deposition is “blurred” by the width of the detector. An example of this 

can be seen in the results for 100 keV electrons in beryllium shown in Figure 17. 

The calorimeter width is 28% of the mean range, causing the measurements to 

“flatten” the peak of the curve and spread out the taper at the end of the curve. 

The results for 300 keV and 500 keV, where the calorimeter thickness is a much 

smaller fraction of the mean range (5% and 2%, respectively) appear to be in much 

closer agreement to CREEP. 

Overall, these benchmarks show the code is performing well in the areas tested. 

Agreement to experiment is generally within 3-5 % for a variety of materials, 

incident energies, and incident angles. 
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Figure 14: Energy deposition is shown as a function of depth into the medium. 

The depth has been normalized to R CSDA = 0.1083 g/cm2 at 300 keV in aluminum. 

The calorimeter thickness was 5.05 x 10e3 g/cm* = 0.0466 .Rcso,~. 
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Energy Deposition vs Depth in Molybdenum 
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Figure 15: Energy deposition is shown as a function of depth into the medium. The 

depth has been normalized to RcsoA = 0.6748 g/cm2 at 1 MeV in molybdenum. 

The calorimeter thickness was 5.301 x 10e3 g/cm2 = 0.0079 .RcsDa. 



2.3. CREEP RESULTS 67 

+Lockwood 30 deg (exp) +Lockwood 30 deg (exp) 
‘~~~~ 1 CREEP 30 deg (SSMC) ‘~~~~ 1 CREEP 30 deg (SSMC) 

OLockwood 60 deg (exp) OLockwood 60 deg (exp) 
-CREEP 60 deg (SSMC) -CREEP 60 deg (SSMC) 

Energy vs Depth in Tantalum 
500 keV Incident at 30 and 60 degrees 

r 

0.10 0.20 0.30 
Fraction of Mean Range 

0.40 

Figure 16: Energy deposition is shown as a function of depth into the medium. The 

depth has been normalized to Rcsoa = 0.3247 g/cm2 at 500 keV in tantalum.The 

calorimeter thickness wa,s 1.655 x lo-’ g/cm* = 0.0510 .Rcsoa. 
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Energy Deposition vs Depth in Beryllium 
Normal Incidence for Varying Energies 
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Figure 17: Energy deposition is shown as a function of depth into the medium, 

where the depth has been normalized to RcsDA = 0.0175 g/cm’, 0.1037 g/cm2, 

and 0.2188 g/cm2 for 100, 300, and 500 keV, respectively.The calorimeter thickness 

was 4.871 x 10m3 g/cm2. This represents 0.2785 .Rcson at 100 keV, 0.0470 .R~SDA 

at 300 keV, and 0.0223 .R~~DA at 500 keV. 
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Figure 18: Energy deposition is shown as a function of depth into the medium, 

where the depth has been normalized to R CSDA = 0.1263 g/cm2 and 0.2617 g/cm2 

for 300 keV and 500 keV, respectively.The calorimeter thickness was 2.194 x lo-’ 

g/cm’. This represents 0.1737 .R CSDA at 300 keV, and 0.0838 .R~SDA at 500 keV. 
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Energy Deposition vs Depth in Iron 
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Figure 19: Energy deposition is shown as a function of depth into the medium, 

where the depth has been normalized to R CSDA = 0.1218 g/cm2 for 300 keV and 

0.6159 g/cm2 for 1 MeV.The calorimeter thickness was 1.956 x lo-’ g/cm’. This 

represents 0.1606 .RC~DA at 300 keV, and 0.0318 .Rcs~n at 1 MeV. 



2.3. CREEP RESULTS 71 

Energy Deposition vs Depth in Carbon 
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Figure 20: Energy deposition is shown as a function of depth into the medium. 

The depth has been normalized to R csDA = 0.4981 g/cm* for carbon at 1 MeV. 

The calorimeter thickness was 1.561 x lo-* g/cm’, which is 0.0313 .Rcsoa. 
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2.3.4 O ther Quantities of Interest 

In addition to the preceding quantities, CREEP also calculates analog stopping 

powers (the a,mount of energy lost per unit distance for both radiative and col- 

lisional events), energy deposits due to individrml interaction types, and “reall( 

pathlength (cumulative distance between events) that ca,n be used to calculate 

detour factors, which are the ratio to the real range compared to the CSDA range. 

2.4 Discussion 

Single scatter elect,ron transport is time consuming. This method is not intended 

to be a general-purpose means of electron transport, but rather a powerful tool 

for USC in situations where it is desirable to obtain information about the basic 

interaction of electrons with the medium. Some timings are shown in Table 4. In 

general, the simulation time increa,ses with the number of histories, the geometry 

size, and as the energy threshold is lowered. All of these require more interactions 

to be simulated. The version of the code that includes compounds and mixtures is 

also notably slower than the element versions, due to the need to find cross sections 

in each element for every step, and then compare them to decide in which element 

the interaction will take place. Table 4 gives some feel for how the run time scales 

with different media. 

Clearly if this method is to become practical, there must be a means for a 

radical speed up in the execution time. Such a means has been suggested in the 

Local-to-Global algorithm [56]. The Local-To-Global concept relies on tallying 

pre-computed probability distributions resulting from a geometry element of fixed 

size, for a fixed incident energy and material type. The remaining chapters of this 

thesis will discuss using CREEP a,s the local stage of the Local-to-Global MRMC 

method. 
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Table 4: Timings for several CREEP runs on a SunSparc 20 running Solar-is OS 

2.51. Each medium wa,s a slab of 1 mm thick. Results for the number of interac- 

tions, the number of calls to the random number generator (RNG), and the user 

time are normalized per incident history 

Medium Density (g/cc) Interactions RNG calls User Time (s) Ratio 

H 1 x lo-” 0.667 8 2.52 x lo-* 1 

0 1.4 x 10-S 5.098 39 1.77 x 10-Z 7.02 

Na 1.0 6714 48001 1.35 5357 

Hz0 1.0 8057 71714 3.30 13095 

Au 19.3 19810 145541 6.98 27698 

2.5 Summary of Single Scatter 

The need for a reliable low-energy electron transport method is currently great, and 

continues to grow with advances in microdosimetry and~microtechnology, especially 

given the fact that some condensed history approximations tend to deteriorate at 

low energies and/or small step sizes [4]. 

Can SSMC fill this need? The answer of course depends on the context. Al- 

though there are no inherent step size limitations, at energies comparable to the 

binding energy of the material, there are at least three approximations in CREEP 

that become weak, as pointed out earlier. First, the kinematics which are used 

to find the scatter angle after an ionization event. neglect binding energy. This 

alone will probably not cause a major perturbation in the electron trajectory, since 

large-angle electron scatter is primarily an elastic event. Second, in compounds, 

chemical binding effects are neglected. So, for example, the binding energy of an 

Hz molecule is 16.4 eV, but CREEP would use the binding energy of elemental 

hydrogen, 13.6 eV. Third, as mentioned previously, the binding energy is locally 

r 
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deposited, rather than simulating the atomic relaxation process and tracking the 

resulta,nt Auger electrons and fluorescent photons. Although LLNL maintains a 

database that would address these issues (EADL), it has not been coupled to 

CREEP’s transport. In addition, the non-spectral energy loss treatment of excita- 

tion events may also present problems at these energies or higher regimes. A sim- 

ple energy straggling algorithm for excitation would probably reduce these effects, 

however. Finally, and most fundamentally, there is the problem of the uncertainty 

of the cross section data itself. These limits have yet to be fully explored. 

Because of its slow run times, the single scatter algorithm presented here is not 

a general-purpose transport tool. However, there are certain instances in which it 

is desirable to obtain the most accurate answer possible - regardless of the time 

required. When does single scatter simulation have the most acceptable run times? 

It is most feasible when the total number of interactions is relatively small, as in 

a case involving low initial energy, a thin target, minute volume, or sparse media. 

Chemically simple media are much faster than media which have many elemental 

components. 

Eventually it is expected that SSMC may become useful a,s a benchmarking 

tool for new scattering theories, a learning tool for developing physical intuition 

about parts of a large problem, and a modeling tool for small instruments such as 

some ion chambers, and other devices for studying energy deposition or interaction 

sites on a small scale. 



Chapter 3 

The Macro Response Library 

3.1 Introduction 

The main purpose for developing the single scat,ter code, CREEP, introduced in 

the previous chapter, was to provide data that could be used in a fast, accurate 

global stepping code, which will be detailed in the next chapter. The crucial bridge 

between these two codes is the library that holds all the single scatter results. An 

overview of the library is shown in Figure 21. This chapter will describe the 

contents of the MRMC data library, with empha,sis on the various quantities that 

comprise a single kugel data set. There is one kugel data set for each single scatter 

run of a given material, size, and incident energy. 

Recall that CREEP transports all primary and secondary electrons from the 

center of the sphere, until they either 1) fall below the energy threshold (meaning 

they are absorbed inside the kugel), or 2) escape through the surface of the kugel. 

All escaping electrons have their exit conditions tallied in a variety of different 

histograms so that the resulting distributions can be normalized, reformatted and 

stored for sampling in the global transport code. 

Separate tallies are kept for primary electrons and knock-on electrons. Photons 

are also tallied separately. Since CREEP does not track photons, their information 

is projected to the surface of the kugel along their birth trajectory. They are then 

tallied in the same routine as the electron data. Any photon interactions that 

may have occurred between the birth point and the kugel radius are lost in this 
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MRMC Librarv 

6 
Calcium .., Carbon 

0.25 MeV . . . 8.b MeV IEnergies] 

pjmary: knock-on: photon: 
exit position 

exit energy 
exit trajectory1 
exit trajectory2 

exit band 

exit osition 
f exr energy 

exit trajectory1 
exit trajectory2 

exit band 
ave #escaping 

exit position 
exit energy 
exit trajectory1 

exit trajectory2 
exit band 
ave #escaping 

Figure 21: A partial schematic of the MRMC library. Each level in the tree 

represents a new directory. Only two possible entries are shown at each level for 

brevity. The probability distribution functions (PDFs) at the lowest level comprise 

a complete kugel data set. 
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scheme, but the kugel radii are typically much smaller than the mean free path of 

the photon. 

3.2 Correlation of Phase Space by Exit Bands 

Electron phase space variables are highly correlated to one another. An ideal 

database would have an independent set of distributions for trajectory, position 

and other state variables at each possible exit energy (for example), bcca,use the 

other variables are all effectively functions of energy. For instance, one can imag- 

ine the electrons that pass through the kugel losing only the amount of energy 

due to excitation events do not undergo much a,ngular deflection, which means 

their exit points are tightly clustered about the kugels’ z-axis, and they have not 

created many energetic secondaries. In contrast, the electrons that did give up a 

great deal of energy also scattered through relatively wide angles (resulting in a 

greater dispersion of location at the kugel surface) and were more likely to have 

set energetic knock-ons and photons in motion. 

Since having a separate set of data for each exit energy would result in pro- 

hibitive memory problems, a simpler approach is taken. The phase space is first 

partitioned by exit location, that is, each kugel surface is divided into bands. The 

bands on the kugel surface can be considered analogous to latitude lines on the 

earth, where the kugel’s z-axis corresponds to the earth’s axis of rotation. All 

phase space tallies are kept separate for each band, so that only electrons having 

approximately similar pha,se space are lumped together in distributions.’ 

The existing library was compiled using four bands per kugel for electrons, with 

variable spacing along the z-axis, as shown in Figure 22. The number four was 

chosen as a compromise between several factors. A minimal number was desired 

‘Photon phase space is tallied into a single set of distributions - the entire kugel surface is 
one band to photons. 

r 
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because the amount of memory required for the MRMC library increases as a 

multiple of the number of bands. Furthermore, the statistics in the local PDFs 

become worse as the number of bands increases (particularly as the low-probability 

backscatter region is split), or conversely, for the run time for statistics equivalent 

to the single-surface band case increases. On the other hand, the aforementioned 

correlation is tighter, and the accuracy of the MRMC method as a whole is, in 

principle, improved with a large number of bands. 

Previous inca,rnations of the Local-to-Global method by Neuenschmander, de- 

scribed in Section 1.6.1, and Ballinger, described in Section 1.6.2, used 1 and 8 

(5 forward + 3 backscatter) surface bands, respectively. Since the intended appli- 

cation for this code was most similar to Neuenschwander’s successful MMC code, 

four bands was considered likely to be adequate. Indeed when a fifth band was 

added in the backscatter region of the kugel shown in Figure 22, the PDFs result- 

ing from the local calculation were not different enough to justify the extra time 

and memory associated with their generation. 

Use of the band structure is straightforward. When an electron exits the kugel, 

its z-coordinate is normalized to the radius of the kugel to obta,in its position 

cosine, zkeg/R+. This position cosine is compared to the band boundaries to 

determine from which exit band the electron escaped. Additional details will be 

discussed in Section 3.4.2. 

3.3 CREEP Kugel Phase Space Tallies 

For the sake of simplicity, all tallies discussed in this chapter have 100 equally 

spaced bins, which is a somewhat arbitrary assignment, but easy to manage. Ide- 

ally, the number and spacing of bins would be optimized for each quantity (as would 

the number and spacing of bands), for each incident energy, and for each material. 

Optimization of the resolution in these tallies is an area for future research. 
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Figure 22: A diagram of the kugel geometry showing the four surface exit bands. 

All electrons are incident at PO, the center of the kugel. The electron track shown 

has several knock-ons and escapes at the sampled point e = (zcku9, vLug, zkus) which 

is in Band 3. The bands are spaced closely in the forward direction due to the 

forward peaked nature of the electron distributions. 
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There are a minimum of 44 separate loo-bin tallies for each kugel library entry: 

4 quantities (x 4 bands) for primary electrons, 5 (x4 bands) for secondary electrons, 

and 4(x1 band) + 1(x4 bands) for photons; as well as 4-bin band probabilities 

for each of the 3 particle types, and a few other quantities that must be stored. 

(Memory requirements for this information is discussed in Section 3.7.) Additional 

details for each of the tallies are given below. 

3.3.1 Primary Position Cosine 

This quantity, z/Rk,,,, has variable minimum and maximum values depending on 

the extrema defining the band. For the first band, the position cosines cover the 

range from unity to the minimum limit on band 1 (0.98), the second band has 100 

bins between band 1 min and band 2 min, etc. Because the limits on each band are 

known by definition (and since the number of bins per distribution is constant); 

this is the most finely resolved quantity in the database; there are 400 bins across 

the surface of the kugel. 

3.3.2 Primary Exit Energy 

This quantity, E,,,, is tallied as the fraction of the incident energy, E,,,/E,,, 

from 0 to 1. By normalizing to the incident energy before the value is stored, a few 

operations are saved in the global calculation, since it is the fraction which must be 

multiplied by the real electron energy (which is usually not the same as the energy 

at which the distributions are tallied) to determine the energy for the next global 

step. In addition, it is more revealing to plot the normalized energy distributions 

of various incident energies together, as can be seen in Figures 48-51. The flat 

region at the high end of each curve with O-amplitude is due to the energy that 

must be given up to traverse the radius of the kugcl. Note lower energy electrons 

must give up a larger fraction of their energy to cross the kugel. 

r 
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Other methods of tallying the exit energy have been suggested [40]. For in- 

stance, the quantity could be tallied as 

(3.1) 

where g is the mass stopping power, such that the term s .pRk,, represents the 

expected energy loss. This has the advantage that it would scale very well from the 

tabula,ted energies to the actual energy of the kugel because it varies slowly with 

energy. However, it would require a slightly more complicated binning structure 

than the simplistic version presented here, since the limits of w depend on the 

incident energy. For example, at 0.25 MeV in a 0.5 cm radius calcium kugel, the 

bins would have extrema of 

wo = 
$$ p&u, 

%I 
N 0.65 (3.2) 

(3.3) 

(3.4) 

while a kugel initiated with an energy of 8.0 MeV would have values approximately 

of 0.02, and 1.02, respectively. The distributions resulting from this method are 

slightly less intuitive, which is a factor in the developmental stages of a code, but it 

is probably a better choice for future use because the dynamic range of the stored 

value is stretched. 

3.3.3 Primary Exit Trajectory 

There are two main challenges to consider when tallying the electron’s exit trajec- 

tory from the kugel. First, an appropriate frame of reference which takes advantage 
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of the symmetry of the problem must be chosen. Second, a way of preserving the 

relative importance of each component of the trajectory must be devised. 

Reference Frame for the Trajectory Tally 

If the electron did not scatter as it traversed the kugel, it would emerge normal to 

the surface. Thus, measuring the components of the exit trajectory with respect to 

the normal is an intuitive and sensible approach. The normal frame is translated 

by&==?++$+ 22, and rotated by an angle 0 compared to the kugel 

reference frame. It is defined by the surface normal, Z, at the exit point, e, as the 

vector relative to which the trajectory is tallied; the axis along G, which is defined 

as the vector which is normal to n’ and intersects the kugel’s z-axis at point za, 

which is a distance t from e; and the axis along p7 which defined by 

~==iixo: (3.5) 

This geometry is illustrated in Figure 23. 

The first attempt to tally direction cosines simply translated the kugel coordi- 

nate system to the sampled exit point and did not rotate. The result was that the 

distributions were flattened out, because, although most electrons were emerging 

approximately in the normal direction, each exit location had a different represen- 

tation of the “normal” vector. The flattened distribution meant that the global 

sampling algorithm (discussed in the next chapter) was unlikely to choose a exit 

trajectory that corresponded to the normal vector at the sampled exit point. 

In order to tally the exit vector, l? r, with respect to the normal frame, the 

components of the normal frame axes must be expressed in terms of the kugel 

frame coordinates. The components of ?i depend on the exit point, e, and are 

given by 



3.. 33 

Figure 23: The local geometry for the electron’s exit trajectory. The trajectory for 

the last step inside the kugel is represented by syz and the trajectory of the exiting 

electron is shown by l&. 
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where (:~k~,, ynUg, 21;~~) = e and RnUg is the kugel radius. The components of Care 

(3.9) 
(3.10) 

(3.11) 

and the components of 6 are given by equation 3.5: 

Pl = n2 03 ~ n3 02 (3.12) 

p2 = n3 o1 - n, o3 (3.13) 

p3 = n1’02-n2.0,. (3.14) 

The direction cosines of the gI trajectory relative to the new axes can be found 

by taking the projection of dcx, dcy, and dcz onto the new axes: 

den = dcx 7~1 + dcy n2 + da n3 

dco = dcx .ol+ dcy o2 + dcz o3 

dcp = dcx.p,+dcy.p2+dct.p,. 

(3.15) 

(3.16) 

(3.17) 
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Storing Trajectory Components 

As seen above, the exit trajectory is specified by three correlated direction cosines 

within the CREEP code, of which only two are completely independent since 

dcx2 + dcy2 + dcz2 = 1. 

The correct way to store trajectory components is to use a method that fully 

retains this correlation. To do this, one would store the probability of dcn,P[dcn], 

and P[dco; den], the probability of dco as a function of den. This would require 

a, separate dco PDF for each element of P[dcn], causing an increase of storage by 

the square of the number of bins in P[dcn]. It would also require longer running 

time of the local code to get adequate statistics. 

One might be tempted to abandon correlation completely and store P[dcn] and 

P[dco] in separate distributions. This has the untractable problem that it would 

be possible to sample two direction cosines that would sum to a quantity greater 

than one, which is a non-physical solution. Even if the values were normalized, 

the shape of the original distribution would be perturbed. 

A better solution can be seen by revisiting the basic spherical coordinate 

scheme, shown in Figures 24. A direction can be specified by extending a vec- 

tor from the center to a point on the unit sphere. This point is defined by two 

quantities: the azimuthal angle and the polar angle. It is the sines of these angles 

which are stored in the MRMC library. 

In the defined kugel geometry, this corresponds to storing one of the direction 

cosines directly, dcp = sin4, and storing the projection of the elevation angle from 

the tangent plane, p, where 

sin8 = cos,u = 
dco 

Jdco2 + dcn2 
(3.18) 

In effect, this is storing the other direction cosine with its dependency on dcp 
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e 
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Figure 24: The spherical coordinate system uses two angles to define a point, or 

trajectory on the unit sphere. 

factored out. In the global sampling code, the dependency can be reintroduced 

after a particular dcp is selected, as will be shown in Chapter 4. This prevents 

unphysical values. 

Both distributions for the cosines of these angles are tallied from -I to 1. Al- 

though the dcp and cosw are sampled from independent distributions and not 

correlated to each other, this difficulty is mitigated somewhat by the band struc- 

ture. 

3.3.4 Knock-on Exit Energy 

The knock-on exit energy is tallied in the same manner as the primary; it is also 

normalized to the incident energy of the primary. However, the bins span only 

half the range required in the primary case, from 0 to 0.5, since the knock-on by 

definition can have no more than half of the primary’s energy. 
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3.3.5 Knock-on Position Cosine 

The knock-on position cosines are tallied in exactly the same way as in the primary 

ca,se, with the extrema for zk7,g/Rgug determined by the extrema for the respective 

bands, as in the primary case. The position cosines for the knock-on distributions 

are spread out compared to that of their primary electrons due to the electrons’ 

tendency to scatter through larger angles at lower energies. 

3.3.6 Knock-on Exit Trajectory 

The tra,jectory for the escaping knock-on electrons is tallied in exactly the same 

manner as it is in the primary ca,se. 

3.3.7 Photon Energy 

As was discussed in the previous chapter, although most bremsstrahhmg photons 

created have low energy, it is possible for an electron to give up all of its energy 

to a photon. Clearly it is important to allow for this possibility due to the large 

impact it would have on the overall distribution; thus the bremsstrahlung energy 

tallies run from 0 (none of the electron’s energy) to 1 (all of the electron’s energy). 

3.3.8 Photon Position Cosine 

The position of the photon at the point of the bremsstrahlung interaction is 

recorded as zkuy/Rkug. There is no band structure for photons. Any ambigu- 

ity about which band the photon would have escaped from if it could have been 

tracked to the surface is avoided since all positions are tallied in the same distri- 

bution. 

r 
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3.3.9 Photon Trajectory 

The trajectory for the bremsstrahlung photon is computed and tallied in the same 

manner as it is for electrons, with the exception that it must be projected to the 

surface from its birth position. 

3.4 Other Tallies 

3.4.1 Average Energy Expended 

The average energy expended in a kugcl per history on a bzmd-by-band basis can 

be used for expected energy loss calculations in the global calculation. The energy 

expended in the kugel is computed when the electron escapes from a particular 

band, by taking the difference between the incident energy and the exit energy. 

Thus any energy that has escaped with secondary particles is considered lost and is 

reflected in this quantity, even though the secondaries may be sampled and tracked 

on their own at a later step in the global code. More on this topic will be discussed 

in Chapter 5. 

3.4.2 Band Probabilities and Boundaries 

The number of primary (and, separately secondary) electrons leaving each band is 

counted and normalized by the total number of incident (or secondary) electrons 

in the problem to obtain the probability of escaping from each band. These prob- 

abilities, are stored in file along with the z/R value for the boundary of each bin. 

Examining the values shown in Ta,ble 5 - Table 8 gives a sense of the peaked nature 

of the distributions for each particle type, for several incident energies and kugel 

sizes. 
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Table 5: The probabilities of a primary electron escaping from each surface band 

for calcium (p=1.6 g/cma) with R k,,=O.O5 cm, for four incident energies. 

Band 
- 

1 

2 

3 

4 -__ 

I 
I 

z/R 0.25 MeV 1 MeV 5 MeV 8 MeV 

0.98 5.0e-6 0.57 0.90 0.98 

0.80 4.2e-5 0.25 0.09 1.6e-2 

0.40 3.7e-5 0.11 3.9e-3 S.le-4 

-1.0 7.7e-6 0.06 l.Oe-3 2.2e-4 

Table 6: The probabilities of a secondary “knock-on” electron escaping from each 

surface band for calcium (p =1.6 g/cma) with Rk,,=O.O5 cm, for four incident 

energies 

Band z/R 0.25 MeV 1 MeV 5 MeV 8 MeV 

1 0.98 0 0.52 0.41 0.43 

2 0.80 0 0.25 0.42 0.39 

3 0.40 0 0.13 0.13 0.13 

4 -1.0 0 0.10 4.le-2 4.6e-2 
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Table 7: The probabilities of a secondary bremsstrahlung photon escaping from 

each surface band for calcium (p = 1.Gg/cm3) with I&g = 0.05 cm, for four 

incident energies. 

Band z/R 0.25 MeV 1 MeV 5 MeV 8 MeV 

1 0.98 0.02 0.04 0.83 0.89 

2 0.80 0.17 0.13 9.5e-2 3.8e-2 

3 0.40 0.30 0.28 3.0e-2 2.7e-2 

4 -1.0 0.51 0.55 4.6e-2 4.7e-2 

Table 8: Band probabilities for several ltugels of varying size for carbon (p = 

2.0g/cm3) at an incident energy of 6.5 MeV, 

Band z/R 0.025 cm 0.05 cm 0.1 cm 

1 0.98 ,995 0.99 0.97 

2 0.80 4.0e-3 8.8e-3 2.3e-2 

3 0.40 2.6e-4 4.9e-4 1.1e-3 

4 -1.0 8.6e-4 1.3e-4 2.5e-4 
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3.4.3 Average Number of Knock-ons Escaping 

The number of knock-on electrons that escape the kugel for each incident history 

is counted.* When the primary eventually leaves the kugel, the escape energy is 

tallied in an energy bin as described in Section 3.3.2 above. The bin number that 

is used in this energy tally is saved, and the same bin is incremented in an array 

which stores a count of knock-ons as a function of exit energy and band. When the 

output routines are called, the number of knock-ons escaping in each of those bins 

is divided by the number hits in the corresponding exit energy bin, resulting in the 

average number of knock-ons that escape along with the primary of a particular 

energy. This quantity is also relevant if the primary is absorbed (considered a 

“band 0” event in the code) because it is still possible that a secondary may have 

escaped even though the primary did not. 

3.4.4 Average Number of Photons Escaping 

The average number of bremsstrahlung photons that escape as a function of pri- 

mary exit energy (which may be 0) is computed as a function of band in a manner 

analogous to that described for knock-ons above. Since CREEP does not transport 

the photons, they are all considered to escape the kugel. 

3.5 Energies, Sizes, and Materials for the Li- 

brary 

The storage required for the MRMC library is directly related to the number of 

kugels required to adequately reproduce the PDFs for a step of given size, energy 

2Recall that the knock-am are given priority in tracking as soon as they are created. The 
phase space of the primary is stored on a stack until the knock-on is escaped or absorbed, then 
its transport is resumed. 
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and material type. There is no interpolation between kugels for size or material 

type; those choices must be made judiciously at library generation time. For the 

current energy, it is essential to be able to interpolate between a small number of 

library energies, called the “energy ladder”. 

3.5.1 Energy Ladder 

The average energy loss and angular deftection increases exponentially with de- 

creasing energy. Condensed history (class I) typically uses 8% energy loss between 

tabulated distributions, but Ballingcr was a,ble to use 25% energy loss between tab- 

ulated distributions by using logarithmic statistical interpolation between discrete 

energies [3]. Statistical interpolation is further explained in Section 4.4. 

Logarithmic energy spacing of kngel library entries helps to control the amount 

of variation between PDF distributions. This increases the number of kugel data 

sets required at low energies, which are not of significant interest to many prob- 

lems, including external beam radiotherapy. Therefore, a spacing corresponding 

to approximately 25% energy loss was used from the initial energy down to 0.25 

MeV, where most electrons arc absorbed (within the 0.05 cm radius kugel). The 

energy ladder should be a function of ma,terial type and kugel size, however, for 

simplicity in this work a constant energy ladder wa,s used. 

3.5.2 Sizes 

For the present work, three kugel sizes were generated, having radii of 0.025 cm, 

0.05 cm, and 0.1 cm. It was desirable to have three different sizes so that smaller 

steps could be taken near boundaries a,nd larger steps through homogeneous regions 

of the phantom. However, all of these sizes are relatively small compared to the 

step sizes necessary to achieve large efficiency savings in a radiotherapy treatment 

planning simulation. For such an application, the transport zones (corresponding 
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to a CT voxel) are on the order of 1 mm and ideally the MRMC method would 

take step sizes that would range from a tenth of a zone to several zones. However, 

the time to generate kugel data sets for kugel radii of 0.5 cm or larger is quite 

significant. For this reason, small kugels were chosen for this “proof-of-concept” 

work. As will be shown in subsequent chapters however, the transport mesh size 

was also scaled down, so that the method could still be tested for its ability to 

cross several zones at once. 

3.5.3 Materials 

One reason the MRMC method (or any Local-to-Global method) may be viable 

for radiation treatment planning is that there is a finite set of materials that are 

needed. A general-purpose code like MCNP or EGS4 may require a library that is 

prohibitively large. Clearly if there were hundreds of kugel data sets that needed 

to be loaded in for each global calculation, the size of the database to be accessed 

by the code would be unwieldy, not to mention the resources that would be re- 

quired to generate it initially. The materials in the MRMC library will ultimately 

be chosen either for biological relevance, machine relevance or experimental bench- 

marking. For the present work only calcium and carbon kugel data sets are in the 

library. These were chosen because they are low Z, non-gaseous elements of clinical 

importance. Compounds, like water, and mixtures, such as air, will be important 

additions. Although a version of CREEP was built to generate these materials, it 

was never benchma,rked thoroughly enough for inclusion here. 
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Table 9: The size in bytes of the data files necessary for 1 kugel in uncompressed 

ASCII format. 

Filename size (B) 

3.6 The Library Format 

All PDFs are written in the Alias format [22] for efficient sampling in the global 

code. This format is essentially a rejection technique which is 100% efficient be- 

cause the PDF is rearranged to exactly fit the sampling space, as is adeptly ex- 

plained by Du [21]. The PDFs may also be written to a file in a standard format; 

[x, P(x)], for viewing. The distributions are not interpolated continuously in x be- 

cause a,ny knowledge of the original s- value is lost in the histogramming process. 

Thus all the possible values within a bin are treated as equi-probable. 

3.7 Storage Requirements for the Library 

There are three essential files for each kugel in the MRMC library. The file “phsp- 

pdf.a,ll” contains all of the phase space information for 3 particle types, each having 

4 PDF types, each of which contain 100 bins of data in the Alias format. The file 

“secnum.all” contains the average number of secondaries emerging from the kugel 

a,s a function of 100 exit-energy bins, for both knock-ons and photons. The file 

“bandprbs.out” contains the cumulative probability of emerging from each surface 

band for each of the 3 particle types. The size of these files is listed in Table 9. 
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The real issue is the amount of storage required for a global calculation, which 

depends on the number of incident energies, sizes, and materials desired for a given 

problem. All of the results presented in Chapter 5 were generated using no more 

than 10 incident energies. For clinical calculations at energies higher than those 

presented in Chapter 5, a few high-energy kugels would need to be added to the 

library, but it is likely that the problem could be run without the same resolution 

at low energies (below 1 MeV). Assuming 10 incident energies are adequate, the 

total storage becomes 1.6 MB. Currently, the MRMC library contains data for 3 

different size kugels, which brings the total to 4.86 MB of data for a single material 

type. 

Many clinical phantoms have only a few material types. However, a typical CT 

scan may have on the order of 10 different material types, requiring approximately 

50 MB for a CT-type calculation. A total database might have on the order of 100 

materials to choose from, of which only the ones necessary for a given run would 

be loaded into the program at once. An estimate for a total, uncompressed kugel 

data library is therefore on the order of 500 MB, a large but manageable size. 

3.8 Library Generation and Navigation 

There are several scripts that are used with CREEP to generate kugel data sets. 

All of them rely on the directory structure of the library that wa,s shown in Figure 

21. In addition to the features shown, there is a file called “dirinfo” at each level 

which lists the number of subdirectories, and subsequently, the names of each 

subdirectory. The dirinfo files can either be generated automatically through a 

system command, or they can be edited by hand. Editing this file by hand at the 

“energy” level of the directory structure, for example, allows the user to define a 

particular subset of the available kugel energies to be read in for a specific run. 

The MRMC data preparation routines will only load data sets from subdirectories 

r 
I 
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that are listed in the “dirinfo” files. 

Because of the intense computational resources required to generate a kugel 

data set, several techniques have been implemented to minimize run time. The 

first two were used together to compile the existing kugel data sets for calcium 

and carbon for kugel sizes having a radius of 0.025 cm, 0.05 cm and 0.1 cm. 

The bootstrap method described in Section 3.8.3 has not been fully tested, but is 

probzrbly necessary to generate the larger kugel sizes which would be necessary for 

real CT volumes. 

3.8.1 Serial Kugel Generation 

By dispatching an entire suite of runs in series, no CPU time between runs is 

wasted and the user can easily generate an entire energy ladder in increasing order 

of kugels for a given material. It is convenient for debugging purposes to generate 

the kugels in increasing energy, so that low-energy problems can be tested while 

the high-energy kugels are running. 

3.8.2 Nested Kugel Generation 

In the concentrically nested configuration, several different kugel sizes of the same 

incident energy and material are run concurrently. Since the kugels begin with 

transport in the center, the results from the inner spheres can be saved and used 

as partial histories for the larger spheres. This is illustrated in Figure 25. 

The electrons are incident at point R’s and are each transported up to the inner- 

most radius, RA, first. As they exit, their phase space is both tallied for the kugel 

data set at Rn, and held in a “hub” bank for later transport through the next 

radius R,. After all the incident electrons have been transported to the innermost 

radius, the transport to the next radius continues by using all the electrons in the 
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Figure 25: Three kugels in a concentrically nested configuration. The electrons for 

all three kugels are incident at point Pa. 

“hub” bank as source particles. The present radius, RR, is considered the inncr- 

most radius, and transport continues to Ro, and so on. This method guarantees 

that there is a smooth transition between radii, and backscattered electrons are 

neither lost nor double-tallied. 

3.8.3 Bootstrapped Kugel Generation 

The concept of generating large kugels by “bootstrapping” up from smaller kugels 

is probably necessary to achieve reasonable run times for clinically-sized kugels. 

This method is a superposition of the local and global codes. It uses the local 

geometry and tracking, but the global sampling routines to determine the state of 

the electron after a step t.hat is the size of a small kugel which has complete data 

in the library already. This method is shown in Figure 26. 

A drawback of this method is that any errors in sampling from the small kugel’s 

data set will be compounded in the large kugel’s data set. These errors will be 

compounded further when the large kugel is used in the global transport stage, 

which is described in the next chapter. Thus a detailed error analysis of this 

r 
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Figure 26: The “bootstrap” method generates a large kugel by using steps that 

are the size of a small kugel. The electron’s phase space at the end of a step is 

sampled with the same routines a,s are used in the global MRMC stepping code, 

which is the subject of the next chapter. 
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method is necessary. For this work, most of the research wa,s done on small kugels, 

and the data sets generated with the bootstrap method were not thoroughly tested. 

It is a promising area for future studies. 

r 



Chapter 4 

Macro Response Transport 

4.1 Introduction 

The fundamental idea behind Macro Response transport is to take large spatial 

steps through homogeneous areas of the medium, often spanning multiple transport 

zones. A stylized two-dimensional representation of this idea is shown in Figure 

27. Chapter 2 explained how .4nalog Monte Carlo works for electrons to provide 

accurate phase data (energy, position and trajectory) and Chapter 3 explained how 

this data can be used to compile sets of distributions for homogeneous spheres. The 

present chapter will discuss how these data sets can be used for efficient transport 

through a larger “global” medium. 

4.2 Logic Flow 

The logic flow for the global transport process is diagrammed in Figure 28. 

Prior to transport, the appropriate data sets from the kugel library are read 

into arrays. This includes data for each material found in the medium and each 

energy needed. At least one data set tabulated with an incident energy higher 

than the incident energy in the global transport is required, due to the statistical 

interpolation scheme for the electron’s current energy, described in Section 4.4. 

The electron is initiated in a user-defined source routine which sets its initial 

energy, Eo, trajectory and position. MRMC tracking begins by checking if the 

100 

r 
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Incident electron 

r 
I 

Figure 27: Transport in the Macro Response method is done by taking large 

steps through homogeneous areas of the mesh. In this picture, the electron is 

incident obliquely on the “top” of the transport mesh and the primary escapes the 

mesh at the bottom, while a secondary electron is absorbed after emission of a 

bremsstrahlung photon. The exit position from one kugel serves as the center of 

the next kugel. Secondary electrons are tracked in the same manner as primary 

electrons. Secondary photons are passed off to a parent code for tracking. The 

transport through each kugel is described in detail in Section 4.7.2 
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Figure 28: The logic flow for Macro Response Monte Carlo transport. 
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electron has enough room to take a step before it hits a boundary. If so, it deter- 

mines how large a kugel it can use, and selects an appropriate energy for the data 

set from the choices in the library. An exit band on the kugel surface is selected 

(see Section 4.5). If it is zero, the electron was absorbed and its energy is sent im- 

mediately to the energy-spreading routine described in Section 4.7. Otherwise, the 

electron escaped and MRMC then samples the outgoing phase spa,ce the electron 

will have at the end of the step, which includes exit energy, exit position, number 

of knock-on electrons that escape the kugel, number of bremsstrahlung photons 

created in the kugel, and the direction cosines that describe the electron’s trajec- 

tory as it leaves the kugel. Position, energy, and trajectory must also be sampled 

for each of the knock-on electrons and bremsstrahlung photons that are created. 

These quantities are written to a bank for later tracking; the knock-on electrons 

are picked up at the end of the primary’s history, and the photons are passed off 

to the parent tracking code. 

All the phase space distributions are stored in a special format for expedient 

sampling with the Alias sampling algorithm [22]. This method has been reviewed 

by Ballinger [3] and Du [21]. 

MRMC transport is completed when all the electrons in the primary bank have 

been tracked, at which time an output routine tabulates information about the run 

and a post-processing routine in the parent program converts the energy deposited 

in each zone to absorbed dose. 

4.3 Determination of Step Size 

The MRMC library contains data for kugels of a few different radii. A large 

kugel size is desirable to save time in the global calculation, but a small size 

may be necessary when the electron is approaching a boundary. Thus selecting 

the optimal kugel radius available for a given step depends on the distance to 
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the nearest boundary along the direction of travel, db. If some boundaries are 

to be considered “significant” and others not (such as the bounda,ry between two 

materials of nearly the same density) the distance-to-boundary routine needs to 

include that information in its calculation. Once we know the maximum distance 

that can be traversed along the current trajectory, the largest kugel radius that is 

less than db is selected. Since db is only checked in the direction of travel, the kugel 

may have some overlap with the new material. This case is discussed in Section 

4.8. 

4.4 Determining the Kugel Energy 

The MRMC library contains data from local calculations that were initiated with 

many different incident energies. It is necessary to select one of these energies 

to represent the current electron. The array of possible values is sea,rched to 

determine the two closest candidates, Ehi and El,. A linear-logarithmic statistical 

interpolation is done to randomly choose between them. The value of & is chosen 

if the random number x is such that 

x> 
logE,,I - 1ogE 

logEhi - logEl,; 

otherwise El, is chosen. 

This interpolat,ion differs from conventional logarithmic interpolation, in which 

an intermediate value between the endpoints is selected. Since the discrete energy 

points in the energy ladder represent the only choices available, it is the frequency 

with which the bounding values are chosen that tunes the interpolation. The 

interpolation is “statistical” in the same sense that the Monte Carlo method as 

a whole is a statistical process, as was introduced in Section 1.5. Each selection 

of energy is a valid choice, but a single choice (probably) does not adequately 
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represent the electron’s real energy. Rather, it is through the process of making 

these choices many times that the correct overall energy distribution emerges. 

After many histories, then, provided the data sets are not too sparse in energy, 

the resulting energy distribution is correct. If the kugel data sets are not sufficiently 

spaced in energy, the linear-log statistical interpolation is not valid and causes the 

resulting energy distribution to favor one of the remaining energies. 

4.5 Determining the Exit Band 

The cumulative transmission probability for each band (beginning with band 1, 

since it is chosen most often for most kugels) is read into an array for global 

transport. Once the size and energy of the kugel have been defined, the exit 

band is determined simply by comparing a random number, x’ to the cumulative 

probabilities. The band chosen is the first band for which 

E > x’, (4.2) 

where P; is the cumulative probability of choosing the it” band 

4.6 Updating Phase Space After A Step 

Assuming that the electron has been transmitted through the kugel, i.e., band l-4 

was chosen, the parameters that describe the electron’s state as it exits the kugel 
.~‘~~ 

must now be sampled. 

4.6.1 Determination of Exit Position 

The position along the z-axis is tallied within each band a,s ~k~~/Rl;~~~, where the 

limits on z are set by the extrema of the bands. Once the z-position has been 



106 CHAPTER 4. iLJACR0 RESPONSE TRANSPORT 

Figure 29: The geometry for the determination of the exit position. The ra,ndom 

angle 6’ defines a point on the ring on the surface of the kugel at distance zkUp from 

the kugel’s center. 

determined, the exit position is constrained to the ring of radius Rrinq at the 

surface, about which it is evenly distributed. The x and y positions are functions 

of a random angle, B between 0 and 2.n. 

Ic’ = R+ sinB 

g = R,;,, cod, 

(4.3) 

(4.4) 

where 

This geometry is illustrated in Figure 29. 

(4.5) 
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4.6.2 Determination of Exit Trajectory 

Chapter 3 mentioned the importance of choosing the proper coordinate frame for 

accurate sampling of direction cosines. MRMC uses a reference frame defined by 

the surface normal, n’, at the sampled exit point, e, as the vector relative to which 

the trajectory is tallied; the axis along 15, which is defined as the vector which is 

normal to fi and intersects the kugel’s z-axis at point 20, which is a distance t from 

e; and t.he axis along 6, which defined by 

~=n’xo: (4.6) 

This geometry is illustmted in Figure 30. 

A few steps are necessary to extract the two direction cosines needed to define 

the new trajectory. First, the two cosines are sampled from their respective dis- 

tributions: dcp; and cost, the cosine of the projection of the elevation angle from 

the tangent plane. The remaining two direction cosines can be defined by 

dco = cosp J1-dcp2 

den = IdcoJ ~(1/cosp2) - 1. 

(4.7) 

(4.8) 

Note that den is always positive due to the electron emerging from the kugel. 

Since these quantities are defined in terms of a frame of reference normal to 

the kugel surface, the axis of this frame must be defined in terms the present kugel 

axes. The components of Z are given by 

(4.9) 
(4.10) 

r 

I 



10 

Figure 30: The global geometry for direction cosines. The trajectory through the 

current step is represented by R,J and the trajectory of the exiting electron is shown 

by I&. 
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n3 = ~n-~~l&.,,, (4.11) 

where (zkugr ykug, zku,) = e and Rk,, is the kugel radius. The components of O’Hare 

01 = -Xkq t I (4.12) 

02 = -y&t (4.13) 

03 = (a - Zh’J/t, (4.14) 

and the components of p’ are given by equation 4.6: 

PI = 122 03 - 723 o* (4.15) 

p2 = n3 ‘01 - n1 ‘03 (4.16) 

p3 = n1’02-7l2.0~. (4.17) 

This allows the sampled angles to be expressed in terms of the kugel frame, as 

dCX~,, = (dcp ‘PI) + (dco ‘01) + (den nl) (4.18) 

dcyk,, = (dcp . PZ) + (dco ‘02) + (den n2) (4.19) 

dczkug = (dcp ~3) + (dco 03) + (den n3) (4.20) 

Then the direction cosines must be transformed from the kugel frame to the 

global phantom frame in the same manner they were updated in the single scatter 

code, CREEP. 
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4.7 Energy Deposition to the Transport Mesh 

The importance of a good energy deposition algorithm, especially when the entire 

code is primarily benchmarked by depth dose curves, cannot be overestimated. In 

particular, when the kugels are allowed to cross several transport zones (which 

is the key t.o saving computation time), allocating energy amongst those zones 

in a realistic way is one of the most significant challenges facing this method of 

transport. 

4.7.1 Magnitude of Energy Deposition in Kugel 

Energy deposition is not a quantity that is tabulated directly in the kugel data set. 

Instead, it is deduced by sampling an exit energy for the primary electron, as well 

as the exit energies for any secondary particles that escape. After these quantities 

are sampled, the “sampled” kugel deposition, E,,,,,,, is given by 

(4.21) 

where Etnit is the initial energy of the electron at the center of the kugel, N,,hO and 

N icOn are the number of escaping secondary photons and knock-ons, respectively, 

and Epho,i and lL,,i are the sampled exit energies of the Gh photon and the j”’ 

knock-on electron. This equation may result in negative depositions, due to a lack 

of correlation between the exit energy of the primary electron and the total energy 

sampled for the secondaries. The negative depositions are statistically valid and 

necessary to achieve the proper energy distribution in the mesh. 

It may be tempting to save some sampling time by simply using the average 

energy deposited per step in the chosen band. In fact this quantity is tallied and 

was used in the global transport code experimentally, but abandoned due to poor 
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results. Using the average quantities eliminates the energy straggling “wings” 

of the distribution, as can be seen in Figure 31. These wings arc necessary to 

reproduce features of electron behavior such as the tail of the depth dose curve, 

which is the result of many small depositions. 

4.7.2 Distribution of the Deposition Across Several Zones 

When the kugcl is large enough to encompass many zones, there are several factors 

that affect the way the energy deposition should be shared between the zones. First 

a path must be assumed through the kugel that begins at the center and ends at 

the sampled exit position. Two potential paths, a simple radial path and a 3- 

segment path, were evaluated in this work and are illustrated in Figure 32. The 

extent to which this assumed path traverses through each of the transport zones 

is one factor that governs deposition in each of those zones. The stopping power 

is another factor, since it changes a,s the electron slows down en route to the edge 

of the kugel. 

Zone Weighting along the Path 

With the above in mind, it is clear that the energy-spreading algorithm must 

count the number of zones traversed and store the partial pathlengths through 

each. MRMC does a table lookup to obtain the stopping power r at the beginning 

of each zone (or every group of zones) and calculates an “expected loss”, < AC >c 

after crossing each ith zone, by multiplying the stopping power at the durrent 

energy times the partial pathlength. The energy in the subsequent zone is found 

by subtracting off < LIEI,,, >i-l. 

When this process has been completed for all the N zones, the expected energy 

loss for the kugel, < & >ktig is known and used to normalize all the zonal losses. 

‘Stopping powers WPL’~ generated from the technique out~lined in ICRU 37 [47]. 

r 
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5.0 MeV e- on Infinite Calcium 
density q 1.6 g/cc 
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Figure 31: The difficulty with using the average energy deposition for the chosen 

band, as opposed to using the energy deposition given by equation 4.21, which 

depends on the sampled outgoing energy at each step. The tail of the average 

deposition curve is cut short. The mean range of a 5 MeV electron in calcium is 

1.85 cm, according to ICRU Report 37 [47], which is in good agreement with the 

“Sampled” and “CREEP” deposition curves. The phantom is an infinite calcium 

block with a source embedded at 0.2 cm. 
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r 

Figure 32: Two possible representations of the average electron path through the 

kugel for the purpose of energy deposition. The electron is incident at PO, the 

center of the kugel, and escapes at the sampled point e along the trajectory RI. 
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Thus the deposition in each of the N zones that are determined to lie in the 

electron’s path is given by 

where E,,,~ is the sampled energy loss for the whole kugel given by equation 4.21, pi 

is the pathlength through the i”’ zone and S(E) is the restricted electron stopping 

power. 

Choosing a Path through the Kugel 

If the kugel size is on the order of a transport zone, a simple radial path extending 

directly from the center of the kugel to the sa,mpled exit point may be adequate, 

a,s has been seen in prior work in this area [44]. However, in order to achieve 

increased time savings, MRMC deposits energy across multiple zones (typically 

5-15). As can be seen in Figure 33, a more sophisticated algorithm is necessary in 

this case. The simple radial path overestimates the deposition in the first zones, 

and underestimates the deposition in the last zones, as is revealed by the periodic 

bumps in the portion of the depth dose distribution shown. 

The reason for this can be found by examining the differentia,l cross section for 

elastic scatter, shown in equation 2.5. Just as the electron stopping power changes 

as it loses energy, the scattering power also changes, The electrons begin their 

path traveling relatively straight, doing most of the scattering toward the edge 

of the kugel. The degree of this tendency depends on the atomic number of the 

material, its density and the incident energy. A route in the first few zones of the 

kugel which is along the z-axis will result in shorter partial paths through them, 

which causes a lower fraction of the deposition to be allocated to those zones. 
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Figure 33: A comparison showing the step size artifacts a,ssociated with the simple 

radial path deposition when the kugel crosses several zones (here approximately 5, 

since Rkug = 0.05 cm and each transport zone is 0.01 cm deep). The periodicity of 

the radial path deposition results demonstrates the need for a more sophisticated 

energy deposition path through the kugel, “3-Segment Deposition” which is ex- 

plained in Section 4.7.2. The source is embedded at 0.2 cm in the infinite calcium 

phantom. 
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A first step towards a more physical path through the kugel is to allow the elec- 

tron to travel some distance down its z-axis before preceding to the exit position. 

In fact, the path can be forced to meet the “boundary conditions” of this problem. 

The initia,l condition is that the orientation of the kugel was chosen so that the 

electron’s trajectory would be aligned with its z-axis. The final condition is also 

known: it is the exit trajectory that is sampled for the next step. Thus the path 

must approach the exit position traveling along the exit trajectory. Two segments 

of the path are known, then, but the challenge remains to find an appropriate 

length for each of these segments, as well as representing the path in between the 

first and final segment. 

The Significance of Segment Lengths 

Choosing the lengths of the first and final segments was done phenomenologically 

for this work; this is an area where future research is needed. For the path in 

between the first and la,st segments, the simple approximation of a single straight 

path was used. Thus the path was broken into three segments having two articu- 

lation points, PI and Pz, as well the initial point, PO, (the center of the kugel) and 

the exit point, e. This is illustrated by a two dimensional representation in Figure 

34. 

Using this scheme, the length of the middle segment, Z2, depends on the distance 

between PI a,nd P2. The first and last. segments have a length given by 

11 = (A+h) hug (4.23) 

13 = C. &ug, (4.24) 

where x is a random number, and A, B, a,nd C are coefficients that are chosen to 

minimize step size artifacts in the depth dose curve. For example, a calcium kugel 
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Figure 34: The three-segment path through the kugel. The electron is incident at 

PO and exits at the point e along trajectory 2,. 
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of density 1.6 g/cc, radius 0.05 cm, and an incident energy of 2.75 MeV was found 

to have a smoothly varying curve using A = 0.1, B = 0.5, and C = 0.2, while the 

same kugel with an incident energy of 5.0 MeV was found to have good results 

with 4 = 0.3, B = 0.6, and C = 0.1. Samples of the paths resulting from these 

values are shown in Figure 35 and Figure 36. 

4.8 Boundary crossing 

A boundary is defined as either as an interface between two different materials, or 

an interface between two densities of the same material whose difference exceeds a 

user-defined threshold.’ To calculate the correct energy deposition in the vicinity 

of a boundary, an electron is prevented from crossing the boundary as it travels 

on its path through a kugel. This is because the phase space distributions for its 

outgoing state would no longer be valid, even if the electron completes its route 

through the kugel in the same material in which it started. 

Boundary crossing inside of a kugel is prevented in two ways. First, the distance 

to the nearest boundary intersecting the electron’s trajectory, db, sets the limit for 

the step size. However, it is still possible that the projected pathlength through 

the kugel can hit a zone of new material as it deviates from the incident trajectory. 

As explained above, the energy deposition routine in this instance only deposits 

up to the new material and then aborts, beginning a new kugel on the other side 

of the boundary. 

In the new material, the incident trajectory of the electron is the same as the 

trajectory it was following as it detected the boundary; the position is bumped in- 

crementally by a distance ab into the new material along this trajectory. The new 

kugel has this point as its center, which implies that it is effectively “straddling” 

*In the Peregrine implementation of MRMC, the edge of the phantom is detected when it hits 
a false border of material type “0”. 
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Figure 35: A comparison of paths through the kugel generated from the two al- 

gorithms tested. UPPER : 2.75 MeV incidence; simple radial deposition (II = 0; 

/3 = 0). LOWER : 2.75 MeV incidence;(ll = (0.1 + 0.5x)Rk,,; /3 = 0.2Rk,,). 
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5.0 MeV e- an Calcium 

5 MeV e- on Calcium 
J-Segment Deposition 

o.05 ~~~ 
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Figure 36: A comparison of paths through the kugel generated from the two algo- 

rithms tested. UPPER : 5.0 MeV incidence; simple radial path deposition (II = 0; 

l3 = 0). LOWER : 5.0 MeV incidence;( II = (0.3 + 0.6x)&,; /a = O.l?&,,). The 

difference in the depth dose curve that results was shown in Figure 33. 
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the boundary. Although this may seem disconcerting (the kugel was generated 

for a homogeneous medium), a,ny inconsistency is avoided. If the selected elec- 

tron path through the kugel does not cross a zone of different material, transport 

proceeds as usual. If the selected path contains a zone of the other material, the 

deposition will once again abort. 

For kugels with a relatively high probability of backscattcring, the above logic 

could result in considerable “bouncing” between media, which in turn escalates 

the run time of the simulation. A possible remedy is to increase the size of f.!&, 

the incremental “bump” into the new material. However, this type of shortcut 

must be exercised with caution since it could easily compromise the quality of the 

results. 

4.9 Tracking Secondary Particles 

4.9.1 Treatment of Knock-on Electrons 

In Chapter 3 it was explained that the average number of knock-ons escaping the 

kugel per history is stored as a function of the primary exit energy bin. Knowing 

the mean number, the probability for the first N knock-ons can be reconstructed 

with a Poisson distribution. Thus the number of knock-ons to track, Nkon is 

formally obtained by using a random number x to set a limit, and summing terms 

in the Poisson distribution until 

(4.25) 

In practice, there is often little error and some time savings in doing a statis- 

tical interpolation between the integers bounding the mean value, i.e., using the 

remainder of the mean value as the probability for selecting the number to be 
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INT@) + 1, otherwise INT@) is used. 

For each escaping knock-on, an exit band must be sampled, along with its exit 

energy, trajectory and position, As stated in the previous chapter, these knock-on 

distributions are separate from the primary distributions. Once these quantities 

are known, they are put in a temporary knock-on bank for storage until the end of 

the primary’s history. After the primary has either escaped the problem or been 

absorbed, the knock-ons are popped off the bank and tracked in exxtly the same 

manner as the primary electrons. 

4.9.2 Treatment of Bremsstrahlung Photons 

The number of photons escaping the kugel must be determined in a manner similar 

to that of the knock-ons. However, there are a few differences since the code does 

not do photon transport. The distributions are not as tightly correlated, since 

there is only a single exit band over the entire kugel surface. Also, the photons 

are projected to the surface of the kugel along their initial trajectory. Thus a,ny 

interaction that may have occurred between the birth point of the photon and the 

kugel surface is lost. However, since the mean free path of the photon is usually 

much longer than the kugel radius, this is a good approximation. After the photon 

phase space is sampled from the photon distributions, it is passed into a photon 

transport code. In the Peregrine implementation, each photon’s phase space is 

written directly to Peregrine’s main bank, where it is popped off and tracked 

between electron histories. 

4.10 Interface with the Parent Tracking Code 

The MRMC code has been written as a subroutine, a,ssuming a parent code will pro- 

vide the electron bank, define the transport mesh, and do any post-processing of the 
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energy deposition. For physically valid results, the parent code must also have the 

ability to track photons. As has been discussed, MRMC produces bremsstrahlung 

photons which in turn generate Compton or photo-electrons, which are passed back 

to MRMC. 

Par all of the results shown in this work, the photon tracking was done by Pere- 

grine Version 1.1. Peregrine also reads in the CT scan and assigns the materials. 

A different parent code which provides these capabilities could also be used, since 

contact with Peregrine occurs only through a few isolated subroutines which have 

access to Peregrine’s global variables. 



Chapter 5 

Results of the MRMC Method 

5.1 Introduction 

The Macro Response Monte Carlo Method was implemented in the form of a series 

of subroutines called by the Peregrine Version 1 code. The following test problems 

involve calculating the dose a,s a function of depth in a phantom, because that 

is the most relevant capability for the intended application. They stress two of 

the most important algorithms in MRMC the energy deposition algorithm for 

sprea,ding energy across several zones (typically 5.lo), and the boundary crossing 

algorithm. 

Three codes were used for comparison with the MRMC results: MCNP4b [13], 

EGS4[41] and the standard class 2 condensed history electron package inside of 

Peregrine version 1 [30]‘. 

Several metrics were used to assess the agreement of each of the families of 

curves. First the total deposition to the medium, Edel,, was compared. Secondly, 

the magnitude and location (x-coordinate) of the point of maximum dose, D,,,, 

was obtained. Finally, the practical range, Rp, was estimated for each curve~by ex- 

trapola,ting from the straight descending portion of the curve to the bremsstrahlung 

tail. These quantities a,re summarized in a table for each phantom. 

The standard deviations of the mean of the energy deposited for MCNP, EGS4 

and Peregrine were less than 1 % in the high dose regions (the upper 80% of the 

‘Other versions of Peregrine are under development, 

124 



5.2. TEST PROBLEM 1: INFINITE MEDIUM 125 

dose range) for all of the curves. The reported standard deviations with Peregrine 

running the MRMC electron transport package were also less than 1% in this 

region, however, the real statistical error in the MRMC global calculation results 

is difficult to quantify. This is because it is a result of both the number of histories 

used to generate the loca,l PDFs and the number of histories used in the global 

calculation. The accuracy of the binning of the PDFs in the local code would a,lso 

need to be folded into a formal error analysis. Error analysis in Local-to-Global 

methods is an area that requires further study. 

5.2 Test Problem 1: Infinite Medium 

The source for the infinite medium phantom is an embedded point source at x = 

0.2 cm emitting electrons along the Z-direction. It was embedded primarily for 

analysis of the backscatter peak, which can be seen at the beginning of each curve. 

(External sources can be handled in MRMC with the usual boundary crossing 

techniques described in Chapter 4.) The size of pha,ntom is 2 cm x 2 cm x 2 cm. 

It contains 200 zones in the x direction and 1 zone in the y and z direction. This 

geometry is shown in Figure 37. 

The depth dose curves that resulted from transport through this phantom for 

MCNP, Peregrine and MRMC at an incident energy of 4.9 MeV are shown in 

Figure 38. A summary of the curve metrics is shown in Table 38. The three curves 

are quite close overall. The discrepancy in energy deposition between all three 

codes is less than 1%. MRMC predicts a D,,, which is 2.5% lower than that of 

MCNP’s Dmz, and 1.7% lower than Peregrine’s D,,,. Peregrine and MRMC show 

the location of D,,, to be within the same 0.1 mm zone, while MCNP predicts 

it occurs 0.3 mm downstrea,m. The practical range for the MRMC curve is 1.3% 

shorter than than of tha,t Peregrine and 1.9% shorter than that of the MCNP 

curve. 
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Figure 37: An illustration of the infinite medium phantom. 

Table 10: A comparison of infinite calcium depth dose parameters for 4.9 MeV 

electrons. 

Code Edep (MeV) D,,, (mGy/lOOk) x(L,,) (cm) Rp (cm) 

MCNP4B 4.550 0.120 0.71 1.59 

Peregrine vl 4.541 0.121 0.68 1.58 

MRMC 4.507 0.123 0.68 1.56 
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4.9 MeV e- on Infinite Calcium 
density = 1.6 g/cc 

- Peregrine vl 
-- MRMC 
---- MCNP 

0.000 r- 
0.0 0.5 1.0 1.5 2.0 

Depth (cm) 

Figure 38: A depth dose comparison in an infinite calcium phantom for 4.9 IvfeV 

electrons. A comparison of parameters derived from these curves can be found in 

Table 10. All runs used 1OOk incident histories. 

r 
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Figure 39: An illustration of the single-inhomogeneity phantom. 

5.3 Test Problem 2: Single Density Inhomogene- 

ity 

This phantom has a density inhomogeneity from a distance of 0.25 cm to 0.5 cm 

in the phantom, while the rest of the phantom has the density at its nominal 

value, which is 1.6 g/cm’ for calcium. This is shown in Figure 39. The source is an 

embedded point source at x = 0.2 cm emitting electrons along the i-direction. The 

size of phantom is 2 cm x 2 cm x 2 cm. It contains 200 zones in the x direction and 

1 zone in the y and z direction; each transport zone is 0.01 cm in the Cdirection. 
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Table 11: A comparison of low-density inhomogeneity calcium depth dose param- 

eters for 4.9 MeV. 

5.3.1 Low Density 

The density inhomogeneity was assigned to half the nominal value, which is 0.8 

g/cm3 for calcium, in this test. The depth dose curves that resulted from transport 

through this phantom for EGS4, Peregrine and MRMC at an incident energy of 

4.9 MeV are shown in Figure 40. A summary of the curve metrics is shown in 

Table 11. All three of the curves are quite close for total deposition and D,,, 

On the total deposition, MRMC is in agreement with EGS4 to less than 0.1%; and 

in agreement with Peregrine to 0.5%. On the D,,,, MRMC is 1.7% higher than 

EGS4 and 0.8% higher than Peregrine. The practical range predicted by MRMC is 

3.6% shorter than that predicted by EGS4, a,nd 1.8% shorter than that predicted 

by Peregrine. 

5.3.2 High Density 

The high-density spot phantom is identical to the one above, except the inhomo- 

geheity has a density nearly twice the nominal value for calcium, 3.0 g/ems. The 

depth dose curves that resulted from transport through this phantom for EGS4, 

Peregrine and MRMC at an incident energy of 4.9 MeV are shown in Figure 41. A 

summary of the curve metrics is shown in Table 12. The total energy deposition is 

in agreement to about 1% for all three codes a,nd the location of I),,,, is within 1 



130 CHAPTER 5. RESULTS OF THE MRMC METHOD 

2 0.0100 
‘i: 
0 
is 
E 
Y 
z 
c 
2 

cl 
E 0.0050 

4.9 MeV e- on 2-density Calcium 

- Peregrine vl 
---- EGS4 
- MRMC 

density=l.6 g/cc 

1 .oo 
Depth (cm) 

Figure 40: Calcium phantom with a low-density inhomogeneity depth dose com- 

parison for 4.9 IveV electrons. A comparison of parameters derived from these 

curves can be seen in Table 11 All runs used 1OOk incident histories. 
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Table 12: A comparison of high-density inhomogeneity calcium depth dose param- 

eters for 4.9 MeV. 

Code Edep (MeV) D,,, (mGy/100k) 4Dmaz) (cm) b (cm) 
EGS4 4.615 0.0123 0.49 1.38 

Peregrine vl 4.625 Osl128 0.50 1.37 

MRMC 4.574 0.0127 0.50 1.35 

zone. The magnitude of D,,,, for MRMC is 3.2% greater than that for EGS4, but 

0.8% less than that of Peregrine. The deviation between the codes in this quantity 

reflects the fact that the interface boundary is almost precisely at the location of 

D,,,,. The practical range predicted by MRMC is 1.5% short of that predicted by 

Peregrine and 2.2% short of that predicted by EGS4. 

5.4 Test Problem 3: “Riblet” Phantom 

This phantom has a series of thin inhomogeneities having a density of 3.0 g/cm2. 

while the rest of the phantom has the density at its nominal va,lue. It is pictured 

in Figure 42. The source is an embedded point source at x = 0.2 cm emitting 

electrons along the Z-direction. The size of phantom is 2 cm x 2 cm x 2 cm. It 

contains 200 zones in the x direction and 1 zone in the y and z direction; each 

transport zone is 0.01 cm in the &direction. 

The depth dose curves that resulted from transport through this phantom for 

EGS4, Peregrine and MRMC at an incident energy of 4.9 MeV are shown in Figure 

43. A summary of the curve metrics is shown in Table 13. All the codes are within 

1% on the total energy deposition. The magnitude of D,,,, in the MRMC curve 

is 0.8% higher than it is in the EGS4 curve, and lower by the sa,me amount in 
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4.9 MeV e- on 2-density Calcium 

- Peregrine vl 
---- EGS4 
- MRMC 

Depth (cm) 

Figure 41: Calcium phantom with a high-density inhomogeneity depth dose com- 

parison for 4.9 MeV electrons. A comparison of parameters derived from these 

curves can be seen in Table 12. All runs used 1OOk incident electron histories. 
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Figure 42: An illustration of the “riblet” phantom. 
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Table 13: A comparison of “riblet” calcium phantom depth dose parameters for 

4.9 MeV. 

Code Lp WV) La, (mGy/lOOk) 4L,,) (cm) % (cm) 

EGS4 4.620 0 .0123 0.59 1.34 

Peregrine vl 4.624 0.0125 0.62 1.32 

MRMC 4.575 0.0124 0.60 1.28 

the Peregrine curve. The location of D,,, on the MRMC curve is approximately 

midway between the EGS4 D,,,, and that of Peregrine. There are some noticeable 

differences between the three codes, however. MRMC has difficulty particularly in 

the nominal-density regions which are “sandwiched” by the high-density regions, 

layers 3 and 5 in Figure 42. In these layers, MRMC is as much as 3.3% higher 

than EGS4 and Peregrine, which are in good agreement with each other. In layer 

4, Peregrine is also as much as 3.3% higher than EGS4. The practical range of the 

MRMC curve was estimated to be shorter than that of EGS4 by about 4%, and 

shorter by that of Peregrine by approximately 3%. This quantity was somewhat 

more difficult to estimate on this phantom, since the inhomogeneities interfered 

with the declining slope of the curves. 

5.5 Summary of G lobal Test Problem Results 

Overall, the depth dose curves show that the MRMC method is performing rea- 

sonably well in the areas tested, as compared to several well-benchmarked, ma,ture 

codes. The maximum excursion of any measured quantity was 4%, which wa,s the 

practical range of the MRMC curve in the riblet phantom compared to the EGS4 
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Figure 43: Calcium “riblet” phantom depth dose comparison for 4.9 MeV electrons. 

The parameters derived from these curves can be seen in Table 13. All runs used 

IOOk incident electron histories. 
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curve. The cases shown were intended to be stringent tests of the energy deposi- 

tion a,nd boundary crossing algorithms. The absolute dose deposited per particle 

agreed very well between all the codes in all the phantoms. The backscatter region 

is nearly identical for all the codes in all the phantoms. One minor point of concern 

is tha,t MRMC demonstrates a small but consistant tendency to underestimate the 

practical range. Several ca,ses indicate that the beginning of the depth dose di- 

vergence occurs at the point in the phantom where the electron has an energy of 

roughly 0.9 MeV in calcium. It is possible that the energy spacing of kugel data 

sets in this energy region is slightly too coarse. This would be an important area 

for future studies. 

5.6 Timing for G lobal Test Problems 

The above studies indicate that the MRMC algorithm can cross S-10 transport 

zones with a single kugel in a reliable manner. Although the MRMC code has not 

yet been optimized for speed, it is worthwhile to speculate on the significa,nce of 

this for clinical problems. As stated in Chapter 1, equation 1.13; the time required 

for a Monte Carlo run is given by 

T t-u0 = tstep * %teps/histo7.y * nhisfwies. (5.1) 

The time savings of MRMC over Peregrine’s condensed history package, 7, running 

the same problem is given by 

For the phantoms shown here, Peregrine with the MRMC electron transport 

package running the 3-segment energy deposition algorithm actually ran slower 
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than the condensed history prima,rily due to the small scale of the phantoms. For 

the infinite calcium phantom, 7) = 0.526, and (n steps~~L~story)~~~~~ = 35.8, while 

( qteps,histary)~~ = 157.8. This indicates tst, for MRMC is presently approximately 

8.4*&p for Peregrine. 

For clinical applications the phantom size would riced to be scaled up by a 

factor of 10, with transport zones of on the order of 1 mm. The same scaling in 

kugel size would result in radii of 5 mm, while Peregrine’s step size would remain 

the same. The estimated time savings with the present MRMC code for clinical 

problems is thus approximately a factor of 5. There is likely to be considerable 

memory swapping in these results to access the data from the large PDF arrays. 

Some cleaning up and tuning of the code for efficiency could probably enhance this 

number significantly. Results reported by other Local-to-Global algorithms, such 

as the MMC method introduced in Section 1.6.1, include times that are a factor 

of 15-20 fa,ster than EGS4 [46]. 



Chapter 6 

Summary of the MRMC Method 

The main goal of this thesis was to prove the feasibility of basing electron depth 

dose calculations in a phantom on first-principles single scatter physics, in an 

amount of time that is equal to or better than current electron Monte Carlo meth- 

ods. 

Single scatter Monte Cxlo has long been recognized as the most accurate way 

to perform electron transport, but is prohibitively slow for most simulations, due to 

the overwhelming number of electron interactions in media. The MRMC method 

achieves run times that are on the order of convent,ional electron transport methods 

such as condensed history, with the potential to be much faster. This is possible 

because MRMC is a Local-to-Global method, meaning the problem is broken down 

into two separate calculations. The first stage is a local, in this case, single scatter 

calculation, which generates probability distribution functions (PDFs) to describe 

the electron’s energy, position and trajectory after leaving the local geometry. The 

second stage is a global calculation, which in this thesis, consists of depth dose 

calculations in simple phantoms with density inhomogeneities. Ultimately this 

stage could be a clinical radiation therapy treatment planning calculation. 

A series of details were pieced together in this process. 

First a family of ana,log Monte Carlo codes, CREEP, were created by relying 

on the Evaluated Electron Data Library at LLNL for cross sections. CREEP was 

benchmarked against experiments and other codes for backscatter percentages, 

reflected energy spectrum, energy deposition in various media as a function of 
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depth. All comparisons were favorable, as can be seen in Chapter 2. 

Next a version of CREEP wa,s built to serve as the MRMC local code, in spheri- 

cal “kugel” geometry. A systematic method of quantifying the variables describing 

the primary electron’s exit state was decided upon, and extended to the secondary 

electrons and photons. A binning structure was devised for these quantities. First 

the kugel was divided into four surface bands, which were preferentially spaced in 

the forward direction, each band keeping separate distributions. Each distribution 

was further broken down into 100 equally spaced bins. Thus a “kugel data set” was 

generated with each run of the code, resulting in about 160 kB of distributions. 

The next step involved generating many kugel data sets, to put together a 

“kugel library” of results. A series of CREEP runs was performed for a variety 

of incident energies (from 0.25 MeV to 8 MeV), step sizes (0.025 cm to 0.1 cm in 

radius) and material types, although only the calcium and carbon libraries were 

complete enough for testing with the global code. Several codes to build multiple 

kugels efficiently were tried. 

Finally, a global stepping code was written, in which every step conformed to 

a local calculation in the kugel library. The global code navigates and samples 

from the appropriate data set of the kugel library, and keeps track of quantities 

of interest in the global geometry, such as energy deposited per transport zone. 

An energy deposition scheme was devised to share the deposition across several 

zones within a kugel which meets the boundary conditions of the electron’s path 

through the kugel. This was necessary because there is no information in the data 

set about where the electron traveled within the kugel. 

The stepping code was benchmarked as a series of subroutines inside of the 

Peregrine Monte Carlo code. It was compared to Peregrine’s usual class II con- 

densed history electron transport package, EGS4, and MCNP for depth dose in 

simple phantoms having density inhomogeneities. Since the kugels completed in 

the library were of relatively small size, the zoning of the phantoms was scaled 
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down from a clinical size, so that the energy deposition algorithms for spread- 

ing dose across 5-10 zones per kugel could be tested. Most resulting depth dose 

calculations were within l-2% of well-benchmarked codes, with one excursion to 

4%. 

Most of these logical steps described in this thesis have details that could be 

improved upon, and some potential improvements xe mentioned in Section 6.1. 

Nonetheless, this thesis shows that the concept of using single scatter-based physics 

in clinical calculations would not only be possible; but would likely be more efficient 

than current methods, provided large kugels were generated. 

6.1 Areas for Future Development 

Some work remains before MRMC can be used for radiation treatment planning 

calculations. Both the local and the global codes need additional capabilities 

and/or improvements. Additionally, the MRMC library needs to be expanded 

to include a large set of appropriate materials, energies and the kugel sizes. 

6.1.1 Local Code Additions 

l Compounds/ mixtures 

In order to include materials of biological relevance, it is essential to develop 

the ability to simulate electron transport in compounds and mixtures reliably. 

Although a version of CREEP was built to address this problem, it requires 

further benchmarking. The density effect may require special treatment for 

kugels of high energy in compounds, since the density effect included in 

the EEDL is for elements. This code was especially slow, and efficiency 

enhancements could also make the benchmarking process much smoother. 
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. Low-energy physics 

CREEP, and by extension MRMC, could fill an extremely useful niche in 

low energy, small volume studies if its low-energy physics models were en- 

hanced. hJIlore details on this topic were provided in Chapter 2. In particu- 

lar, CREEP’s binding energy is locally deposited, rather than simulating the 

atomic relaxation process and tracking the resultant Auger elect.rons and flu- 

orescent photons. Although LLNL maintains a databa,se that would address 

these issues (EADL), it has not been coupled to CREEP’s transport. This 

is not an area of concern for radiotherapy directly, but having these abilities 

in the code would make a wider range of benchmarks possible, especially 

against codes like EGS4, which include some relaxation physics. 

l Paths Through the Kugel 

Ultimately it is necessary to consider storing PDFs for electron paths through 

the kugel. In order to obtain large gains in speed, large kugels must be used 

that will span many zones in the global transport stage. As was demonstrated 

in Chapter 4, the key to getting accurate results for dose deposition is to 

partition t.he kugel’s energy deposit accurately across the zones. Studies 

are needed to examine and characterize the paths. One possibility is to 

store parameters that relate to each path as a whole, such as the length and 

deviation from the simple radial path at various points. Another possibility 

would be to partition the kugel’s internal volume and keep tallies of the 

partitions hit by each history. 

6.1.2 MRMC Library Building and Extension 

l Materia,ls 

The MRMC library must include data sets for all biological materials, in 

addition to materials likely to be used in the gantry head and bean-shaping 
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l Optimization of Number and Placement of PDF Bins 

Currently, all PDFs for all energies and ma,terials are treated the same - 

with 100 equally placed bins. This method is satisfxtory over the small size 

and energy range tested, however, when the library is extended to larger 

sizes, and a larger energy range it will be wasteful due to storing large areas 

of bins with few counts. It will also not resolve narrow distributions well 

enough. This is especially important a,t higher energies, where the PDFs 

are extremely forward peaked. With the present scheme for tallying exit 

energy, for example, almost all the electrons would end up in the highest 

bin, and there would be almost no counts at lower bins. The extrema for 

the bin placement could be based on stopping power calculation. In general 

a scheme with variable resolution is necessary. 

. Post-Processing of Kugel Data 

As can be seen in Appendix B, many of the PDFs that result from CREEP 

are noisy. This is especially true of the PDFs for bands which did not receive 

many events. The tallies for knock-on electrons are also especially noisy at 

those incident energies where few escape. It could be advantageous to em- 

ploy a smoothing algorithm on these distributions. It may also be interesting 

to investigate alternatives for storing raw kugel data - like finding ana,lytic 

representations for the distributions, which would decrease the memory re- 

quirements significantly. However, these tactics would have to be employed 

cautiously to avoid biasing the physics. 
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6.1.3 G lobal Code Enhancements 

l Energy deposition scheme 

The energy deposition scheme in MRMC is likely to be the single biggest ob- 

stacle for achieving excellent depth dose results with very large kugels. More 

information is needed about how to spread the energy in a realistic way over 

many zones. One way to achieve this is to store information about the path 

in a PDF generated in the local calculation, as discussed above. Another 

alternative may be to start with a path that meets the known boundary con- 

ditions in the global code, then use a pathlength correction from condensed 

history scattering theories. 

l Benchmarking 

More depth dose curves with a larger variety of materials and energies are 

clearly necessary to test this method further. In addition, studies that ex- 

plicitly examine the lateral scatter and ba,ckscatter in phantoms should be 

undertaken, since this method should show improvements over current clin- 

ical simulation methods in this regard. 

l Error Analysis 

In order to fully evaluate the benchmarks, it is necessary to quantify the error 

in the global calculation. This would require a propagation of uncertainities 

through the local code. A formal series of sensitivity studies to determine 

the importance of various parameters on the global calculation would be a 

useful starting point. 

l Code Efficiency 

The biggest gains in efficiency can probably be obtained by cleaning up and 

tuning the code, which was not written with this in mind. Further efficiency 

enhancement can bc obtained by pre-processing the transport mesh for kugel 

r 
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size, as seen in Neuenschwander’s Macro Monte Carlo [44]. This eliminates 

the need to choose a kugel size during transport. 

6.2 Other Applications 

Aside from radiation treatment planning calculations in a phantom or patient 

volume, there are several other areas of poternial application for a,11 or part of the 

MRMC method. 

. MRMC 

The most promising application for this work may be in the chara,cterization 

of the radiation source. It is likely to be both the most efficient and t,hc most 

accurate way to transport electrons through the gantry head of the acceler- 

ator and the patient-specific beam-shaping devices. The energy deposition 

algorithm is not a factor in this application, since it is the transmitted en- 

ergy that is of interest. The MRMC global ca,tculation is not slowed down 

by dense, high-z materials, and it can simulate low proba.bility events like 

backscatter, which are more important in these materials, mom accurately 

than condensed history methods. 

. CREEP 

The CREEP code has the potential to be extremely useful for detailed elec- 

tron physics simulations on a small scale, due to its extreme accuracy. This 

would include evaluation of new electron transport methods and scattering 

theories, modeling small ion chambers or other detectors, and possibly semi- 

conductors on a small scale. 

l Other Local-to-Global calculations 

Other types of “dense” particle transport may also benefit from the Local-to- 

Global concept. This includes any application where there are an extremely 
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high number of interactions over the region of interest: such as proton trans- 

port; or, photons or neutrons which must travel through media where the 

mean free path is very small compared to the dimensions of the problem. 

Other types of particle transport would require separate local codes, but 

that capability exists for each of those listed. There no inherent restriction 

in the global MRMC transport to electrons; it is simply reading distribution 

functions without regard to what type of particle they represent. However, it 

is possible different particle types may require different types of distributions. 

r 



Appendix A 

Further Details on Scattering 

Theories 

A.1 Moliere theory of Multiple Scattering 

The Moliere theory expresses the distribution of multiple scattering deflections as 

a unique function of a scaled angular variable, r9, as is seen by 

r 

3 
F.& cl15 = 19 till e’- + 

F(‘)(?J) + FQ)(tY) t 
B B2 1 

The relationship between the scaled a,ngle 8 and the true deflection angle, 0 is 

given by the identity 

where xC and B are functions of particle energy and path length 1. The expressions 

for F(‘) and higher orders are obtained from the equation 

where JO is a Bessel function of zeroth order. The values for each term inside the 

square braces in equation [A.11 (PC”) through F@), as well as higher terms) have 

been tabulated by Bethe [8], and Scott [53]. 

The screening angle, xa, is given by 

(A.4) 
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where 7 is t,he kinetic energy in units of electron rest mass, 2 is atomic number, 

and ,0 is the magnitude of the particle velocity in units of the speed of light. 

The parameter xz is the characteristic angle, which is related to the interaction 

probability iu a step size and can be found by 

x: = 0.6009~[ T + 1 ]‘s, 
A + + 2) 

where A is the atomic mass and s is the step length. 

The Moliere parameter B depends on the ratio of the characteristic angle xc to 

the screening angle x~, and is obtained iteratively from the transcendental equation 2 
B-lnB=ln + 1 - 27, 

where -1 is Euler’s constant, y = 0.577215 

A.2 Goudsmit-Saunderson Model for Multiscat- 

ter 

The Goudsmit-Saunderson distribution takes the form of a Legendre series, where 

the PC's are the Legendre polynomials 

FGS(O, s) = -& + ;)e-~G~P&osO) , (A.7) 
C=O 

where s is the step length (in g/cm”). The coefficients Gc are calculated by using 

the equation 

Ge = 2n% 
.i 

‘n[l - Pe(cosB)] o(B) sinBd0, (A4 
0 

where iv, is Avogadro’s number and A is the atomic weight. To account for the 

energy loss of the electron along its track, the following substitution can be made 

in equation [A.71 

sGp + J To G(T) T1 3@ydTa (A9 
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where To is the initial electron kinetic energy at the beginning of the step of length 

s, after which the electron has a kinetic energy of TI. The quantity p S(1’) IS the 

mass stopping power of the medium in MeV-cm’/g. 



Appendix B 

Example Kugel PDFs 

The following pages show an example of the primary electron and knock-on proba- 

bility distribution functions (PDFs) in a kugel data set for a 3 MeV calcium kugcl 

of radius 0.05 cm, a,nd density 1.6 g/ems. There were 500,000 incident electrons, 

each of which underwent an average of 2062 interactions. Over 99.8 % of them 

were transmitted through the kugel. There were 363,548 knock-on electrons cre- 

ated over 10 keV, but only 3.3% esca,ped the kugel. Only the knock-ons which 

escaped a,re tallied. Deta,ils on all of the tallied quantities can be found in Chapter 

All histogram probabilities are presented here the same way they are stored in 

the MRMC library: they are normalized to the number of incident electrons and 

divided by the width of the bin. Multiplying by the bin width would yield the 

probability of selecting any value in the bin. 
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Figure 44: Exiting position cosines for primary electrons a,nd escaping knock-ons 

from Ba,nd 1 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Band 2 Position Cosine (z/R) 
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Figure 45: Exiting position cosines for primary electrons and escaping knock-ons 

from Band 2 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Figure 46: Exiting position cosines for primary electrons and esmping knock-ons 

from Band 3 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Band 4 Position Cosine (z/R) 
3.0 MeV Calcium, R = 0.05 cm 

__ Knock-ax 

0.15 
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Figure 47: Exiting position cosines for primary electrons and escaping knock-ons 

from Band 4 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Band 1 Exit Energy (Eout/Ein) 
3.0 MeV Calcium, R = 0.05 cm 

- Primaries 
- Knock-ons 

0.4 0.6 
Position Cosine (7./R) 

0.8 

Figure 48: Exiting energy for primary electrons and escaping knock-ons from Band 

1 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Band 2 Exit Energy (EoutlEin) 
3.0 MeV Calcium, R = 0.05 cm 

- Knock-ens 
- Primaries 

, 0.2 0.4 0.6 0.8 1.0 
Position Cosine (I/R) 

Figure 49: Exiting energy for primary electrons and escaping knock-ons from Band 

2 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Band 3 Exit Energy (Eout/Ein) 
3.0 MeV Calcium, R = 0.05 cm 

I 0.2 0.4 0.6 0.8 1.0 
Position Cosine (z/R) 

Figure 50: Exiting energy for primxy electrons and escaping knock-ons from Band 

3 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Band 4 Exit Energy (EoutlEin) 
3.0 MeV Calcium, R = 0.05 cm 

- Knock-ons 
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Position Cosine (z/R) 

Figure 51: Exiting energy for primary electrons and escaping knock-ons from Band 

4 of a 3 MeV calcium kugel of radius 0.05 cm. 
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Band 1 Exit Trajectory - dcp 
3.0 MeV Calcium, R = 0.05 cm 

Primaries 
Knock-ens 

r 

0.0 
-1 .o -0.5 0.0 0.5 1.0 

dw 

Figure 52: Exiting trajectory (dcp) for primary electrons and escaping knock-ons 

from Band 1 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3 for an 

explanation of the trajectory tallies. 



Band 2 Exit Trajectory - dcp 
3.0 MeV Calcium, R = 0.05 cm 
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Figure 53: Exiting trajectory (dcp)~ for primary electrons and escaping knock-ons 

from Band 2 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3 for an 

explanation of the trajectory tallies. 
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Band 3 Exit Trajectory - dcp 
3.0 MeV Calcium, R = 0.05 cm 

n 
- Primaries 
- Knock-ens 

3 
dcp 

Figure 54: Exiting trajectory (dcp) for primary electrons and escaping knock-ons 

from Band 3 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3 for an 

explanation of the trajectory tallies. 



Band 4 Exit Trajectory - dcp 
3.0 MeV Calcium, R = 0.05 cm 
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Figure 55: Exiting trajectory (dcp) for primary electrons and escaping knock-ons 

from Band 4 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3~for an 

explanation of the trajectory tallies. 
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Band 1 Exit Trajectory - cos(mu) 
3.0 MeV Calcium, R = 0.05 cm 

- Primaries 
- Knock-ons 

cos(mu) 
0 

Figure 56: Exiting trajectory (cosp) for primary electrons and escaping knock-ons 

from Band 1 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3 for an 

explanation of the trajectory tallies. 
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Band 2 Exit Trajectory - cos(mu) 
3.0 MeV Calcium, R = 0.05 cm 

Figure 57: Exiting trajectory (costi) for primary electrons and escaping knock-ons 

from Band 2 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3 for an 

explanation of the trajectory tallies. 
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Band 3 Exit Trajectory - cos(mu) 
3.0 MeV Calcium, R = 0.05 cm 

- Primaries 
- Knock-ons 

cos(mu) 

Figure 58: Exiting trajectory (~0s~) for primary electrons a,nd escaping knock-ons 

from Band 3 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3 for an 

explanation of the trajectory tallies. 
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Band 4 Exit Trajectory - cos(mu) 
3.0 MeV Calcium, R = 0.05 cm 

- Knock-cans 
- Primaries 
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COS(rnU) 

Figure 59: Exiting trajectory (cosp) for primary electrons and escaping knock-ons 

from Band 4 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.3.3~for an 

explanation of the trajectory ta,llies. 



166 APPENDIX B. EXAMPLE KUGEL PDFS 

Average Number of Knock-ons Escaping 
3.0 MeV Calcium, R = 0.05 cm 

t 
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Figure 60: Average number of escaping knock-ons from a 3 MeV calcium kugel of 

radius 0.05 cm. See Section 3.4.3 for an explanation of these tallies. 
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3.0 MeV Calcium, R = 0.05 cm 
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Figure 61: Average number of escaping bremsstrahlung photons from Bands 1 and 

2 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.4.4 for an explaination 

of these tallies. 
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Average Number of Photons Escaping 
3.0 MeV Calcium, R = 0.05 cm 
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Figure 62: Average number of escaping bremsstrahlung photons from Bands 3 and 

4 of a 3 MeV calcium kugel of radius 0.05 cm. See Section 3.4.4 for an explaination 

of these tallies. 
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